

NASA-ISRO SAR (NISAR) Mission Science and Development Status

Paul A. Rosen Jet Propulsion Laboratory California Institute of Technology

NISAR Project Team

2022 Living Planet Symposium May 26 2022

Copyright 2022 California Institute of Technology. Government sponsorship acknowledged.

NISAR Science Capturing a Dynamic Earth

Earthquake Dynamics, Ridgecrest Wetland Inundation, India

Color = date

- Dynamics of Ice: Ice sheets, Glaciers, and Sea Level
 - Will there be catastrophic collapse of the major ice sheets, including Greenland and West Antarctic and, if so, how rapidly will this occur?
 - □ What will be the resulting time patterns of sea-level rise?
 - How are alpine glaciers changing in relation to climate?

Ecosystems and Biomass Change

- How do changing climate and land use in forests, wetlands, and agricultural regions affect the carbon cycle and species habitats?
- What are the effects of disturbance on ecosystem functions and services?

Solid Earth Deformation: Hazard Response

- Which major fault systems are nearing release of stress via strong earthquakes?
- Can we predict future eruptions of volcanoes?
- What are optimal remote sensing strategies to mitigate disasters and monitor/manage water and hydrocarbon extraction and use

Coastal Processes: India

- □ What is the state of important mangroves?
- □ How are Indian coastlines changing?
- □ What is the shallow bathymetry around India?
- □ What is the variation of winds in India's coastal waters?

NISAR Science Observation Overview

NISAR Characteristic:	Would Enable:
L-band (24 cm wavelength)	Low temporal decorrelation and foliage penetration
S-band (9.4 cm wavelength)	Sensitivity to light vegetation
SweepSAR technique with Imaging Swath > 240 km	Global data collection
Polarimetry (Single/Dual/Quad)	Surface characterization and biomass estimation
12-day exact repeat	Rapid Sampling
3 – 10 meters mode- dependent SAR resolution	Small-scale observations
3 yrs (NASA) / 5 yrs (ISRO) science operations	Time-series analysis
Pointing control < 273 arcseconds	Deformation interferometry
Orbit control < 500 meters	Deformation interferometry
> 10% (S) / 50% (L) observation duty cycle	Complete land/ice coverage
Left-only pointing (Left/Right capability)	Uninterrupted time-series Rely on Sentinel-1 for Arctic

NISAR Will Uniquely Capture the Earth in Motion

ISRO ASAR L+S Band Airborne Testbed on UAVSAR Platform

- 150+ L+S band polarimetric data sets from US ASAR Airborne campaigns over a range of NISAR science-related targets: Agriculture, Soil Moisture, Forests, Glaciers, Sea-ice, landslides
- 2019 Western Campaign
- 2021 East Coast Campaign
- Data Sets available at ASF DAAC

ASAR geocoded products generated through NISAR L2 processor

NASA-ISRO SAR Mission

Close integration with international partner

	Mass (kg)	Power (W)
Spacecraft Mainframe	920	1312
Engineering Payload	134	640
L-SAR	283	1515
S-SAR	314	2757
Common Instrument Structure	466	
Reflector and Boom	292	
Propellant	269	
Total	2678	6224

NASA Provides	ISRO Provides	
 L-band SAR Shared P/L structure & 12m reflector and boom 	 S-band SAR S-SAR baseband data handling (BDH) 	
 Engineering payload GPS, Power & Pyro Payload Data System with 12 Tb recorder NEN-compatible high rate Ka-band system 	 Spacecraft Bus (I3K) ISRO-compatible high rate Ka-band system Observatory I&T GSLV Launch Vehicle 	
Integrated radar observation planning and operations	Spacecraft operations (command uplink, telemetry and tracking)	
L-SAR data downlink to NEN Ka-band stations	S-SAR, select L-SAR data downlink to ISRO stations	
L-band science data processing and distribution	S-band science data processing and distribution	
NASA Science Team	ISRO Science Team	

NISAR Operations Overview

NISAR Development Status

NISAR Fun with RF Fields

JPL tech working on EMI Mitigations

Radar Payload Self Compatibility EMI Testing (March)

Radar Instrument Structure Integration Completed and Closed Out

Radar Instrument Structure Mechanically Installed onto Spacecraft Simulator/Engineering Payload (Feb)

Interior View of Closed out Radar Instrument Structure before mating with S/C Simulator (Feb 8)

Mission Scenario Tests Successful

"Day In The Life"

1. Conducted a slice of a typical "Day in the Life" of science operations during the SIT-03 MST-1 Day-in-the-Life run – including 10-hr ROSTs with background sequences, concurrent science (L-SAR only) data record and dual-channel Kaband playback scenarios on April 12th and a single joint datatake using packaged commanding for S-SAR/BDH as a pathfinder for MST-2 executed on April 15th.

Nominal Deployment

Commissioning

Boom/Reflector Integration

Flight Boom & Reflector were previously integrated & environmentally tested on <u>flight spare</u> structure in 2020

Flight Boom currently being integrated with flight model radar structure; Flight Reflector integration late May 2022

Boom/Reflector Integration

Reflector was completed in 2019

Flight Configuration of NISAR

SweepSAR Measurement Technique

SweepSAR Basics

- On Transmit, illuminate the entire swath of interest (red beam)
- On Receive, steer the beam in fast time to follow the angle of the echo coming back to maximize the SNR of the signal and reject range ambiguities
- Allows echo to span more than 1 Inter Pulse Period (IPP)

Consequences

- 4 echoes can be simultaneously returning to the radar from 4 different angles in 4 different groups of antenna beams
- Each echo needs to be sampled, filtered, Beam-formed, further filtered, and compressed
- On-Board processing is not reversible Requires on-board calibration before data is combined to achieve optimum performance

L-SAR Architecture (Only Horizontal Polarization Shown)

- Ingest 35 Tbits (4.4 TB) of raw data per day on average
- Automatically generate L-SAR L0a, L0b, L1, and L2 science products (> 70TB/day)
 - Generate S-SAR L0 science product for data downlinked through NASA Ka-band
- Perform bulk reprocessing twice during mission
 - 8 months of data after L2 product validation at 4x rate
 - 12 months of data at end of mission at 3x rate
 - Anticipate assessing additional processing / reprocessing options before launch
- Sample products derived from UAVSAR data, processed like NISAR, are available
 - https://uavsar.jpl.nasa.gov/science/documents/nisar-sample-products.html
- Open source (github) ISCE3 software already available, support these workflows and products

- NISAR Instrument and Engineering Payload Integration and Test rapidly proceeding
- Integration with spacecraft planned to begin early 2023
- Global products to Level 2 fully and openly available to the global community
- Cloud-based data, tools and services to facilitate access and use
- Anticipated launch of NISAR in 2023/2024

For more information: *https://nisar.jpl.nasa.gov*

Jet Propulsion Laboratory

California Institute of Technology

jpl.nasa.gov

