
Ellip Studio

 A JupyterLab Environment for developing 
Cloud-ready Earth Observation Applications

www.terradue.com 

May 2022

http://www.terradue.com


● An Earth Observation Application is set of 
command-line tools with numeric, textual and EO 
data parameters organized as a computational 
workflow

● An Application Package uses an explicit language 
that describes the input and output interface of 
the computational workflow and the orchestration 
of its command-line tools.

● The Application Package guarantees the 
automation, scalability, reusability, portability of 
the Application while also being workflow-engine 
and vendor neutral.

EO Application Package



● The command-line tools (e.g. Python, shell 
script, C++) and their dependencies are 
containerized and registered in a container 
registry 

● The computational workflow input and 
output interfaces and the orchestration of 
its command-line tools are described with 
Common Workflow Language (CWL)

EO Application Package

The Common Workflow Language 
(CWL) is an open standard for 
describing analysis workflows and 
tools in a way that makes them 
portable and scalable across a 
variety of software and hardware 
environments, from workstations 
to cluster, cloud, and high 
performance computing 
environments.



● The computational workflow data interfaces use the Spatio Temporal Asset 
Catalog (STAC) to describe the EO data inputs and generated results.

EO Application Package

Stage-in Stage-out

App



● The Platform takes the CWL application 
package and exposes an OGC API 
Processes processing service.

● The Platform provides the automation, 
scalability, reusability, portability by 
converting the OGC API Processes 
execution request into a CWL 
execution using a runner and the 
computing resources of the selected 
provider.

EO Application Package



An example with gdal



Tooling

● A container engine: docker or podman 

● A CWL runner: cwltool, calrissian (k8s)

● An IDE: VS Code or Theia/Coder (in the Cloud)

● An object storage (S3) 

● Access to a container registry (e.g. docker.io, 
quay.io Gitlab, Github)

● Access to Continuous Integration service (e.g. 
Gitlab CI, Github Actions, Jenkins, etc.)

● Access to a Package Registry (e.g. Gitlab, Github, 
Artifactory)

Skills and tooling
Skills

● YAML

● Containers (docker files, docker 
build, tags, etc.)

How can we provide these tools in a fully fledged IDE in the Cloud ?



Typical setup:

- JupyterHub spawns user dedicated JupyterLab 

instances

- Workspace persistence of a few tens of gigas

- Pre-installed tools in base image

Jupyter Notebooks ubiquitous

Providing JupyterLab as part of a service offering is trivial nowadays

But beyond the Notebook experience, it’s somehow a poor IDE 



At scale we often rely on 
JupyterHub to provision users with 
isolated JupyterLab instances.

Coupled with kubernetes and 
kubespawner we get isolated and 
dedicated JupyterLab instances

JupyterHub for isolated servers

This provides JupyterLab but lacks a fully fledged IDE



SaaS with JupyterLab
With extensions, the JupyterLab 
instance can proxy other applications 
like RStudio, Shiny Server, Theia IDE 
or Code Server IDE

This provides JupyterLab and fully fledged IDE 



SaaS with JupyterHub

With other extensions, the 
JupyterHub instance can launch  
other applications than JupyterLab 
using dedicated containers:
IDEs with Code Server or Theia, 
dashboards with e.g. Streamlit

This provides SaaS for isolated applications



Storage

Access to object 

storage (s3) for EO 

reference and test 

dataset

Extend for EO app development

EO toolboxes

No need to pre-install 

the EO toolboxes in 

base image 

Everything done with  

conda/mamba 

Containers

Run containers with 

CLI and additional 

tooling 

Provide additional control over advanced tools management and storage



Ellip Studio
Fully integrated with k8s:

- user data via 
configmaps

- user workspace 
persisted with PVC

- RWX volume for CWL 
horizontal scaling

Provide vertical and horizontal scalability with kubernetes to
 develop and test EO application packages



Ellip Studio - conclusion
● SaaS with JupyterLab and Code Server   

● Advanced tooling:

○ Container engine with podman
○ EO toolboxes (autonomously installed)
○ Object Storage tools
○ CWL runners: cwltool and calrissian

● Storage

○ Persistent workspace
○ Object storage 
○ RWX storage for CWL horizontal scaling

● Container registry, Continuous Integration



Looking forward 
hearing from you!

https://www.terradue.com

Fabrice Brito 

fabrice.brito@terradue.com


