SNAP goes DataCubes

Marco Peters, M. Böttcher, C. Brockmann (Brockmann Consult) C. Cara (CS Romania), L. Veci (SkyWatch) , F. Douziech (CS France) M. Engdahl, S. Plummer, E. Volden (ESA)

ESA Living Planet Symposium 2022, Bonn, Germany

BROCKMANN CONSULT

- 1. SNAP
 - 2. ARD & DataCubes3. BalticAims
 - 4. Summary

LPS 2022 | May 23rd, 2022, Bonn, Germany | SNAP goes DataCubes

SNAP

- **BEAM** (est. 2001) ESA toolbox for the optical sensors on Envisat
- **NEST** (est. 2008) ESA SAR toolbox and build on top of BEAM
- SNAP (est. 2014) ESA started the new toolbox development for the upcoming Sentinel platforms
 - Development on a **common base**
 - SNAP leverages on the heritage of BEAM and NEST
- SNAP is build on **20 years of experience** in EO software development and EO data processing & analysis

 ARD & Data Cubes

BalticAims

SNAP

\circ More Toolboxes

- Proba-V
- SMOS
- Radarsat
- Chris-Proba

SeaDAS (NASA)

- Built on to of SNAP
- With own adaptations & extensions

ARD & Data Cubes

000

Systems Computing Inc

CFS, CCMEO, GSC, AAFC

BalticAims

SNAP + zarr = cloud & data science

Traditional Data Formats

- Made for local disk storage (dimap, netCDF, geoTIFF, ...)
- Not effective on modern cloud-focused infrastructures (high level of parallelisation, distributed data access)

	SNAP	ARD & Data Cubes	BalticAims
LPS 2022 May 23rd, 2022, Bonn, Germany From Preprocessing to Implementation	00@00	000	0000

SNAP + zarr = cloud & data science

- Rapidly growing user data science format
 - Zarr fits perfectly to Python science data stack numpy, xarry, dask
 - jzarr is the Java implementation of the python zarr API (100% pure java)
 - Bridges to openEO an open API to connect R, Python, JavaScript and other clients to big Earth observation cloud back-ends in a simple and unified way

	SNAP	ARD & Data Cubes	BalticAims
LPS 2022 May 23rd, 2022, Bonn, Germany From Preprocessing to Implementation	00000	000	0000

SNAP + zarr = cloud & data science

- SNAP 9 introduces a new data format which leverages the zarr data format as basis
 - storage of chunked, compressed, N-dimensional arrays
 - chunk arrays along any dimension
 - important for cloud optimised storage and processing
 - compress and/or filter chunks
 - important for cloud optimised storage
 - optimised I/O
 - Store arrays in memory, on disk, inside a Zip file, on S₃, ...
 - Read from / write to an array concurrently from multiple threads or processes

Analysis Ready Data & Data Cubes

CEOS Analysis Ready Data (CEOS-ARD)

 ... are satellite data that have been processed to a minimum set of requirements and organized into a form that allows immediate analysis with a minimum of additional user effort and interoperability both through time and with other datasets

• CEOS Product Family Specification includes requirements on

- General Metadata
- Per-pixel Metadata
- Radiometric and Atmospheric Corrections
- Geometric Corrections

Analysis Ready Data & Data Cubes

- Ready to use data in space and time
- Easy access to multidimensional data sets
- Easy analysis of parameters in space and time
- **Easy visualisation** of time slices, time series,
- temporal statistics, ...
- Data cubes support CEOS-ARD as well as thematic space-time gridded data ("IRD – Interpretation Ready Data")
- **zarr format** optimally supports data cubes
- xcube open source EO datacubes based on zarr

	SNAP	ARD & Data Cubes	BalticAims
LPS 2022 May 23rd, 2022, Bonn, Germany From Preprocessing to Implementation	00000	$\bigcirc \bigcirc \bigcirc$	0000

BalticAIMS – Example Application

- BalticAIMS = a data cubes based service supporting marine, coastal and land application in the Baltic Region (ESA Regional Initiative)
- Distributed processing in different processing centres
- $_{\odot}$ Cubes are generated and merged in the cloud
 - SNAP operators integrated into operational production systems
 - Merging of EO information, Copernicus data, public data sources and user supplied data in regional data cubes
 - Integration of data cubes into user's tools (viewer, GIS)

BROCKMANN CONSULT

BROCKHANN GEOMATICS Sweden AB

ΥΚΕ

BalticAIMS – Cube creation with SNAP

Jbes

- Data processing with SNAP OPTICAL, RADAR and 0 MASKS operators
 - Pre-Processing
 - Instrument specific corrections
 - Atmospheric correction (optical), denoising (SAR), ...
 - Pixel quality masks (cloud masking, ...)
 - Thematic processing
 - Land vegetation parameters, chlorophyll concentration, wind, waves, ...
- Spatio-temporal processing with SNAP rasters operators
 - Resampling, collocation, Level 3 binning ...
- Writing zarr files as data cubes 0
 - Zarr writer with xcube conventions
 - Repeatedly adding time slices to a data cube
 - Bulk processing and concurrent composition of a data cube

H	:\S3A_OL_1_EFR\QUALITY_FLAGS	
Pre	zattrs	
Th	0.0	
Th	0.1	
iC	0.2	
	0.3	
	0.4	
	1.0	
	1.1	
	1.2	_
	1.3	
Geor	1.4	
Mas	2.0	
Data		
Imag	2.2	
Class	2.5	
Sear	3.0	1
Expo	3.1	
Band	3.2	
Danc	3.3	
	3.4	
	4.0	
	4.1	
	4.2	
	4.3	
	4.4	

LPS 2022	May 26th,	2022, Bonn,	Germany	SNAP	goes DataC
2. 0 2022	1	2022/2011	Germany	10.0.0	goes Bacae

SNAP ARD & Data Cubes 00000

000

BalticAIMS - System Architecture

SNAP operators to process EO data, zarr output

SNAP zarrs integrated with other data, which are generated with xcube-gen from other sources, such as Copernicus Services. Operated on cloud system.

> All zarr cubes are published via xcube services

Access to information in zarr cubes in various clients, provdided by BalticAIMS service as well as integrated into user's systems

 SNAP
 ARD & Data Cubes
 BalticAims

 LPS 2022
 May 23rd, 2022, Bonn, Germany
 From Preprocessing to Implementation
 00000
 000
 00000

BalticAIMS - Use Case Example

- HELCOM PLC subgroup (Pollution Load Compilations)
 - investigates influence of nutrients on the Baltic Coastal Waters
- \circ Required information:
 - land use (EO via Copernicus LMS), river nutrient loads, river discharge, water quality (EO via SNAP processing)

LPS 2022 | May 23rd, 2022, Bonn, Germany | From Preprocessing to Implementation

- Operational processing using SNAP graphs in Calvalus
 - writing zarr cubes
- xcube processing
 - All source data spatial processing into cubes
 - Serving zarr cubes via API and WMTS
- Public interfaces TARRKA and xcube Viewer
- Integration into QGIS demonstrating end-user tool integration
 - German UBA as HELCOM PLC member
 - Jupyter NB demonstrated, raised interest

Summary

- zarr is a format for storage of chunked, compressed, N-dimensional arrays, optimised for cloud applications
- SNAP is providing zarr as output format already (trial) and will use it as standard output format in the future
- zarr is very well suited to support ARD and data cubes in general
- Prototype applications are successful
- Two development lines for SNAP require future work
 - 1. SNAP is generating cubes
 - 2. SNAP uses cubes as input

