Tipping points

How can Earth Observation help?

Jan Verbesselt^{1,2} and Sebastian Bathiany³

¹Belgian Science Policy Office, Earth Observation, Belgium

²Wageningen University, The Netherlands

³Technical University Munich

Abrupt shifts are all around us

Abrupt shifts happen in the Earth System

Photo: Philipp Hoelzmann

Edges in space can lead to abrupt shifts

Leaf-area index, AVHRR / MODIS

Vertically integrated water vapour (kg/m²), *ERA5*

Bathiany et al., 2020

Probing EO for abrupt shifts and resilience indicators

Extreme events – tipping points?

 Record breaking high temperatures and severe drought during e.g. El Niño

Tipping point

Negative feedback loop

Measure resilience of tropical forests?

Long satellite image time series

- VOD: Passive microwave satellite retrievals from e.g. AMSR-E (Liu et al. 2011)
- NDVI: Optical satellite-based retrievals from MODIS, AVHRR (Pinzon et al. 2013)

Resilience

• Recovery rate from 'small' perturbations (e.g., droughts)

van Belzen, J. *et al.* (2017).

LETTERS PUBLISHED ONLINE: 5 SEPTEMBER 2016 | DOI: 10.1038/NCLIMATE3108

Remotely sensed resilience of tropical forests

Jan Verbesselt¹*, Nikolaus Umlauf², Marina Hirota^{3,4,5}, Milena Holmgren⁶, Egbert H. Van Nes³, Martin Herold¹, Achim Zeileis² and Marten Scheffer³*

• The capacity to recover from disturbances

Slowing down upon low rainfall amounts

Verbesselt, J. *et al.* Remotely sensed resilience of tropical forests. *Nat. Clim. Chang.* (2016).

Effect of small-scale disturbances?

• Deforestation, shifting cultivation, fires, etc.

- Difficult to study with e.g., AVHRR, MODIS, AMSR-E
 - Coarse spatial resolution

New satellite sensors

ESA Biomass mission for 2023 P-band RADAR

Measure forest resilience

Evolution of the open-source BFAST functions for characterizing land change using satellite image time series (Sentinel, and Landsat) Speaker
Date: 26.05.2022, Time: 13:45 | Topic: Enable the Earth Observation Digital Transformation https://bfast2.github.io/

Monitoring tropical forest recovery capacity using:

• De Keersmaecker, W. et al. Evaluating recovery metrics derived from optical time series over tropical forest ecosystems. RSE (2022)

Recovery indicator	Equation	Explanation
Relative Recovery Index	$RRI = \frac{\left \max\left(f(t_{post}) \right) - \bar{f}(t_{dist}) \right }{\left \bar{f}(t_{pre}) - \bar{f}(t_{dist}) \right }$	Recovery magnitude relative to disturbance magnitude
Ratio of Eighty Percent	$R80p = \frac{\max(f(t_{post}))}{0.8 \overline{f}(t_{pre})}$	Post-disturbance state relative to 80% of pre-disturbance state
Year on Year Average	$YrYr = \frac{\overline{f}(t_{\Delta}) - \overline{f}(t_{dist})}{\overline{t_{\Delta}} - \overline{t_{dist}}}$	Related to post-disturbance slope

 Milenković, M. et al. Assessing Amazon rainforest regrowth with GEDI and ICESat-2 data. Science of RS (2022)

GEDI & ICESAT-2 Airborne LiDAR

Towards early warning using EO data

Can detailed recovery measures be a proxy for tipping points?

Smith, T., et al. Empirical evidence for recent global shifts in vegetation resilience. *NCC* (2022)