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Exploring specificities of ML algorithms for Fire Risk Prediction

• Predict the risk of fire occurrence in an area for a day k, exploiting information for the area 
exclusively gathered up until day k-1

• Essentially handled as binary {fire, no-fire}, due to label availability (historical fires)
• Ideally, a reliable confidence (probability of risk) level should be output

• Each area corresponds to a 500m cell of a grid
• Grid covers the whole Greek territory

• Detailed historical data from 2010-2020
• > 800M instances

Problem formulation
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Exploring specificities of ML algorithms for Fire Risk Prediction

Problem formulation - Features

EO: NDVI, EVI, LST

Meteorological features: Temperature (max, min, mean), Dew Temperature 
(max, min, mean), Wind speed (max, dominant), Wind direction 
(wind_direction, dominant_direction), Cumulative Precipitation

Geomorphological/natural features: DEM (DEM, aspect, slope, curvature), 
Land use/Land cover

Fire history, Spatially smoothed fire history, Month of the year, Week Day
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• Essential tool for daily operational organization
of fire services

• Current service of Civil Protection daily maps
• Need for higher spatial resolution

Exploring specificities of ML algorithms for Fire Risk Prediction

Motivation
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• Predict most of the fires
• Try not to predict the majority of the territory (country) as fire

Translation: a good balance between sensitivity/specificity*
• Ideal: {>95%, >90%}
• Realistic:

• {>90%, >70%}
• {>80%, >80%}
• Depends on the exact application setting/needs

Exploring specificities of ML algorithms for Fire Risk Prediction

Motivation – deliver meaningful results

•*Percentage of actual fires (resp. no-fires) we correctly predict
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Domain specificities

Exploring specificities of ML algorithms for Fire Risk Prediction

Extreme data imbalance Ratio of ~1:100K between fire/no-fire cells

Large data scale Challenging to properly perform model selection

830M instances for 11 years
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Absence of fire
Areas that should have a fire occurrence but did not by chance-
lack of impossible to capture features (i.e. a person’s decision to start a 
fire, a cigarette thrown by a driver, a lightning)

Exploring specificities of ML algorithms for Fire Risk Prediction

Domain specificities

Spatiotemporal correlations
Adjacent cells are expected to be nearly-identical
Previous years’ incidents might affect the short-term behaviour 
of an area

ERA5Land cell

Grid 500x500m

Fire cells
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Exploring specificities of ML algorithms for Fire Risk Prediction

Concept drifts

Domain specificities
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Current approach

Exploring specificities of ML algorithms for Fire Risk Prediction
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Establishment of a complete ML workflow
• Two alternative schemes for cross validation

• Default:
o Consider all the fire (minority) instances of the training set
o Geographically sample the no-fire (majority) instances to create a balanced set
o Perform k-fold cross-validation and select models on the average best validation scores

• Alternative:
o Make the training set balanced, but keep the validation sets highly imbalanced (1/10)
o Adjust so that each training set precedes the respective validation set on a yearly level
o Perform model selection on highly imbalanced folds closer to the real distribution

• Proper dataset splitting for model selection and evaluation
• Ensure that events from the same day/fire event are not distributed in different folds

Exploring specificities of ML algorithms for Fire Risk Prediction
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Establishment of a complete ML workflow

• Adjusted evaluation measures for model selection
• Evaluated on the validation set
• Variable weighting between sensitivity and specificity

• Exploration of a large hyperparameter space for each adopted soa algorithm
• RF, XGBoost, ExtraTress, shallow NNs

Exploring specificities of ML algorithms for Fire Risk Prediction
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Results

Exploring specificities of ML algorithms for Fire Risk Prediction

• Targets (sensitivity/specificity):
• {>90%, >70%}
• {>80%, >80%}

• Achieved:
• {90%, 66%}, {93%, 62%}
• {82%, 71%}, {79%, 76%}

• Agility on balancing the trade-off between sensitivity/specificity
• Via combinations of cross-validation schemes and model selection 

evaluation measures

• A proper problem formulation and baseline methodology
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Exploring specificities of ML algorithms for Fire Risk Prediction

Success stories

Cephalonia island

Fire ignition

Forest Fire Prediction for 03/07/2021
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Success stories

Exploring specificities of ML algorithms for Fire Risk Prediction

Fire in EvoiaFire risk for 03/08/2021
Production date: 02/08/2021

Burned area: ~50,000 ha
Active for 8 days
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Success stories

Exploring specificities of ML algorithms for Fire Risk Prediction

Fire in Attica

Fire risk for 03/08/2021
Production date: 02/08/2021

Burned area: ~7,000 ha
Active for 3 days
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Ongoing work

Exploring specificities of ML algorithms for Fire Risk Prediction
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Exploring specificities of ML algorithms for Fire Risk Prediction

Directions • Handle absence of fire phenomenon
• No-fire instances that are very close to fire instances

o Problematic for learning proper boundaries
o Reduces specificity by default

• Better handle imbalance
• Existing schemes are only half-measures
• Training/validation/test on different distributions

• Examine rare cases and small disjuncts
• Indications that fire instances form discrete clusters within the 

hyperspace

• Handle data sizes
• Try to limit undersampling as much as possible to exploit the 

whole dataset

Imbalanced Learning_ Foundations, Algorithms, and 
Applications (2013, Wiley-IEEE Press)
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Exploring specificities of ML algorithms for Fire Risk Prediction

Approach: Siamese NNs

• Architectures that aim at learning a similarity 
function

• Comprise of parallel NN architectures that receive 
different inputs but learn the same parameters

• SNNs provide the framework for handling several 
of the aforementioned issues

• Particularly triplet loss based SNNs
• Input as triplets of {anchor, positive, negative}

Structure-preserving visualisation of high 
dimensional single-cell datasets

https://www.nature.com/articles/s41598-019-45301-0#Sec17
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• Absence of fire and extreme imbalance can be handled 
to some extent by properly constructing {anchor, positive, 
negative} triplets

• Properly adjust the triplet generation function
• Hard negatives can be ignored or transformed into 

positives
• Semi-hard should probably be emphasized

• Variations of undersampling techniques can be combined
• E.g. Tomek links
• Removing majority instances
• Transforming majority into minority instances

Approach: Siamese NNs

https://medium.com/@enoshshr/triplet-loss-and-siamese-neural-
networks-5d363fdeba9b

Exploring specificities of ML algorithms for Fire Risk Prediction

https://imbalanced-
learn.org/stable/under_sampling.html

https://medium.com/@enoshshr/triplet-loss-and-siamese-neural-networks-5d363fdeba9b
https://imbalanced-learn.org/stable/under_sampling.html
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• Initial findings
• Vanilla Siamese* reached similar effectiveness scores with tuned baseline ML models

• Without any triplet tuning or over/undersampling
• With moderate network tuning

Approach: Siamese NNs

* https://bering-ivis.readthedocs.io/en/latest/metric_learning.html

Exploring specificities of ML algorithms for Fire Risk Prediction

https://bering-ivis.readthedocs.io/en/latest/metric_learning.html
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Exploring specificities of ML algorithms for Fire Risk Prediction

Thank you!

Questions?
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