

Towards an End-to-end LoD1 Building Reconstruction Pipeline from VHR Satellite Imagery

Chloé THENOZ

🖻 eo@magellium.fr

earthobservation.magellium.com

More and more VHR EO satellites...

Climate Change

... For numerous civil applications

Smart Cities

Main contributors: Chloé Thenoz¹, Pierre Lassalle², Gwennaël Matot¹, Clément Dechesne¹, David Youssefi² ¹Magellium, ²CNES

Work inspired by Leotta, et al. "Urban Semantic 3D Reconstruction From Multiview Satellite Imagery." 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (2019): 1451-1460.

Our LoD1 pipeline illustration

CityGML Level of Detail (LoD) standard (Open Geopsatial Consortium)

Challenges:

- Imagery resolution (Pleiades, 50cm, 70cm native GSD)
- Automatic
- Large scale

LoD1 Building Reconstruction Pipeline Overview

Introduction Pipeline Evaluation Conclusion

Preprocessing on True Ortho

Preprocessing on DSM DTM estimation with Leotta et al. DrapCloth imagebased implementation

ΡS

True Ortho

nDSM

nDSM (normalized DSM) = DSM - DTM

Building footprint segmentation: Search for better contours

Introduction Pipeline Evaluation Conclusion

magelium

Deep learning approach

Four axes of study

Training database used:

- Inputs: True ortho + DSM extracted from Pleiades Mono Stereo on Toulouse, France (~80km²)
- **Groundtruth**: OpenStreetMap building mask roughly spatially calibrated by a uniform translation (imperfect GT)

Inconsistency (destroyed building) Wrong input

Shift between footprint and building

Common mismatches between inputs and GT

True Ortho

Building segmentation groundtruth

Building footprint segmentation: Four axes of study

Input bands

Figure 7: Difference of prediction masks between the U-Net RGBNir and the U-Net RGBNir+nDSM on Montpellier (red: removed by the nDSM, green: added by the nDSM). From left to right: TO image, nDSM, TO image overlaid with the prediction difference. (a) A square with roof-like radiometry (b) A building with a dark and complex roof (c) An elevated road.

Network architecture

Guided contour refinement

More suitable encoder-decoder association

Encoder	U-Net [7]	RefineNet [42]	DeepLabV3+ [43]
U-Net [7]	Х		
ResNet-101 [40]		Х	
ResNet-152 [40]	Х		Х
Xception [41]			Х
EfficienNet [8]		Х	

Building footprint segmentation: Four axes of study

Introduction Pipeline Evaluation Conclusion

Loss function

Cross entropy loss
$$L_{CE} = \sum_{i=0}^{n} -w_i \log \left(\frac{\exp(y_{pred_i})}{\sum_{j=0}^{n} \exp(y_{pred_i})} \right)$$

Dice loss

$$L_{dice} = 1 - \frac{2\sum_{(x,y)} y_{true}(x,y) y_{pred}(x,y)}{\sum_{(x,y)} y_{true}^2(x,y) + \sum_{(x,y)} y_{pred}^2(x,y)}$$

Model	Acc	mIoU	Р	R	F1	IoU
U-Net (cross-entropy)						
RGBNir	0.930	0.845	0.924	0.836	0.878	0.782
RGBNir+nDSM+NDVI+c3	0.926	0.838	0.924	0.826	0.872	0.773
U-Net (cross-entropy + dice)						
RGBNir	0.932	0.847	0.913	0.848	0.879	0.785
RGBNir+nDSM+NDVI+c3	0.937	0.858	0.915	0.863	0.888	0.799

Table 2: Building segmentation networks evaluation. Accuracy (Acc) and mean IoU (mIoU) are computed for all classes. Precision (P), Recall (R), F1-score (F1) and IoU are computed for the building class.

85 MAY - 2022

LPS

8

Weighted sum $L_{hybrid} = 0.5 \cdot L_{CE} + 0.5 \cdot L_{dice}$

Introduction Pipeline Evaluation Conclusion

Database quality

Preliminary study on the impact of shifted groundtruth footprints on the prediction boundary quality

- Database: SemCity (WorldView-2, 50cm, on Toulouse)
- 2 training procedures:
 - → Images WV2 + GT SemCity
 - \rightarrow Images WV2 + GT SC shifted per patch (2px ± 2px)

(a) Original GT

GT (a) Shifted GT SemCity Patch example

Predictions with Images WV2

Building vectorization and regularisation: Recover sharp faces

Introduction **Pipeline** magellium Evaluation Conclusion

bissector

True Ortho

Toulouse, France

LoD1 building reconstruction

Evaluation: Generalisation ability of the pipeline

Introduction Pipeline Evaluation Conclusion

Evaluation: Paris vectorisation and regularisation

Conclusion

Implementation of a 3D building reconstruction pipeline from Pleiades imagery towards LoD1 Investigation of several aspects impacting the sharp restitution of contours

Perspectives

Work reused by CNES in the AI4GEO project

Allowed to identify the main limitations to work on

- Errors are additive along the pipeline
- DSM lack of quality

Current work on DSM improvement by deep learning, inspired by Stucker et al. "ResDepth"

Stucker, C., & Schindler, K. (2022). ResDepth: A deep residual prior for 3D reconstruction from high-resolution satellite images. ISPRS Journal of Photogrammetry and Remote Sensing.

Preliminary results on DSM improvement

Ρ S

Stereo DSM 3D View

Google Maps 3D

Predicted DSM 3D View

Thank you for your attention.

DTM estimation

Leotta et al. DrapCloth image-based implementation

(Median prefilter k=7)

Cloth DSM **DSM** inversion 190 Fitting of a cloth Altimetric profile along the red line (see below) - Hill clipping effect + Good approximation, Fast DSM DTM nDSM True Ortho nDSM

nDSM (normalized DSM) = DSM - DTM

LPS

MAY

Network architecture

Liu, Shuo et al. "ERN: Edge Loss Reinforced Semantic Segmentation Network for Remote Sensing Images." Remote. Sens. 10 (2018): 1339.

More suitable encoder-decoder association

Decoder Encoder	U-Net [7]	RefineNet [42]	DeepLabV3+ [43]
U-Net [7]	X		
ResNet-101 [40]		Х	
ResNet-152 [40]	X		Х
Xception [41]			Х
EfficienNet [8]		Х	

Model	Acc	mIoU	Р	R	F1	IoU
U-Net (cross-entropy)						
RGBNir	0.930	0.845	0.924	0.836	0.878	0.782
RGBNir+nDSM	0.927	0.838	0.910	0.837	0.872	0.773
RGBNir+nDSM+NDVI	0.929	0.842	0.931	0.828	0.876	0.780
RGBNir+nDSM+NDVI+c3	0.926	0.838	0.924	0.826	0.872	0.773
ResNet-101 – RefineNet	0.926	0.84				
ResNet-152 – U-Net	0.888	0.76				
ResNet-152 – DeepLabV3+	0.912	0.81				
Xception – DeepLabV3+	0.882	0.75				
EfficientNet – RefineNet						
RGBNir+nDSM+NDVI+c3	0.931	0.846	0.921	0.841	0.879	0.784
	0.751	0.040	0.721	0.041	0.077	0.70

Table 2: Building segmentation networks evaluation. Accuracy (Acc) and mean IoU (mIoU) are computed for all classes. Precision (P), Recall (R), F1-score (F1) and IoU are computed for the building class.

Building vectorization and regularisation: Recover sharp faces

Loss	Method	IoU	Complexity	Orientation (in °)
c-e	DP (tol=2)	0.65 ± 0.10	0.87 ± 0.36	6.1 ± 6.9
	Kdtree	0.64 ± 0.11	2.02 ± 1.06	5.5 ± 6.3
	PBB	0.63 ± 0.12	0.72 ± 0.36	5.5 ± 6.4
c-e + dice	DP (tol=2)	0.64 ± 0.10	0.84 ± 0.39	5.5 ± 5.9
	Kdtree	0.63 ± 0.10	1.96 ± 1.08	4.5 ± 6.0
	PBB	0.63 ± 0.10	0.72 ± 0.35	5.0 ± 7.0

Table 3: Evaluation of building boundary regularization algorithms on a $1km^2$ Toulouse tile (~ 500 buildings): Douglas-Peucker (DP), Kdtree, Photogrammetric Building Boundary (PBB). Footprints are predicted by U-Net RGB-Nir+nDSM+NDVI+c3 models trained respectively with the cross-entropy (c-e) loss and the hybrid loss (c-e + dice).

Douglas Peucker

KDTree

PBB

Building vectorization and regularisation: PBB algorithm

