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Introduction

 Economic development and populations growth has led to 
unprecedented urban area changes in the past decades

 Rapid changes due to:
– Urban sprawl, new infrastructure, alterations, reconstructions

 Here, we target changes related to zoning
– specifies particular land use (e.g. residential, commercial/industrial, agricultural, 

recreational, etc.)
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Dataset

 Onera Satellite Change Detection (Daudt et al., 2018)

 Multi-spectral satellite imagery Sentinel-2

 Includes 24 locations (14: training, 10: testing) over cities with urban 
changes between 2015 and 2018

 We re-processed:
– atmospheric correction (LaSRC, Vermote et al., 2016)
– co-registration (Skakun et al., 2017)
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Fully Convolutional Siamese Difference (Unet)

 Added dice for a loss function:

 Data augmentation
– rotation, flips
– simulated changes
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𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = α × 𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 +
1 − α × 𝐿𝐿𝑤𝑤𝑑𝑑𝑑𝑑𝑤𝑤𝑤𝑤𝑤𝑑𝑑𝑑𝑑_𝐶𝐶𝐶𝐶

(Daudt et al., 2018)



Area assessment

 Case study:
– Washington DC – Baltimore, MD area 

(2018-2019)
• Area larger than OSCD locations

 Sampling
– stratified random sampling (Olofsson et 

al., 2014)
– three strata (Olofsson et al., 2020)
– 500 samples
– detailed characterization on LC/LU using 

GE imagery
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OSCD: Location-wise performance
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Overall: UA=0.66, PA=0.6, F=0.63



Baltimore, MD
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Sample-based results for Washington DC-Baltimore
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Washington DC Baltimore
PA, % 40.2 ± 15.9 73.1 ± 13.9

UA, % 63.0 ± 4.9 57.0 ± 5.0

Area of changes
(2018-2019), km2

(relative to the total area, %)

10.9 ± 4.3

(0.85)

10.8 ± 2.2

(0.92)



Sample-based results for Washington DC-Baltimore
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Washington DC Baltimore

Active constructions 78% 86%

Commercial 52% 46%

Residential 27% 21%

School 
(new/renovation) 8% 9%
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Contributions

 Showed that the performance of the OSCD-trained model varies with 
location
– Implication on the number of samples for deriving unbiased area estimates

 Characterized changes in the Washington DC – Baltimore area using 
OSCD-trained model and samples

 Emphasized the “classification-mapping-area estimation” workflow
– Direct estimation of areas from maps (pixel counting) is biased
– Statistically rigorous approach to get unbiased estimates of areas
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