

From benchmarks to mapping: leveraging the use of labeled datasets for urban area change mapping and estimation

Sergii Skakun, Yiming Zhang, Michael Adegbenro

Department of Geographical Sciences, University of Maryland, College Park, MD, US

Introduction

- Economic development and populations growth has led to unprecedented urban area changes in the past decades
- Rapid changes due to:
 - Urban sprawl, new infrastructure, alterations, reconstructions
- Here, we target changes related to zoning
 - specifies particular land use (e.g. residential, commercial/industrial, agricultural, recreational, etc.)

Dataset

- Onera Satellite Change Detection (Daudt et al., 2018)
- Multi-spectral satellite imagery Sentinel-2
- Includes 24 locations (14: training, 10: testing) over cities with urban changes between 2015 and 2018
- We re-processed:
 - atmospheric correction (LaSRC, Vermote et al., 2016)
 - co-registration (Skakun et al., 2017)

Fully Convolutional Siamese Difference (Unet)

Added dice for a loss function:

$$Loss = \alpha \times L_{dice} + (1 - \alpha) \times L_{weighted_CE}$$

- Data augmentation
 - rotation, flips
 - simulated changes

Area assessment

- Case study:
 - Washington DC Baltimore, MD area (2018-2019)
 - Area larger than OSCD locations
- Sampling
 - stratified random sampling (Olofsson et al., 2014)
 - three strata (Olofsson et al., 2020)
 - 500 samples
 - detailed characterization on LC/LU using GE imagery

Stratum 2: "No change" buffer Stratum 3: "Change"

OSCD: Location-wise performance

Overall: UA=0.66, PA=0.6, F=0.63

Baltimore, MD

Changes (2018-2019)

True color (2019), samples

Sample-based results for Washington DC-Baltimore

	Washington DC	Baltimore
PA, %	40.2 ± 15.9	73.1 ± 13.9
UA, %	63.0 ± 4.9	57.0 ± 5.0
Area of changes (2018-2019), km ²	10.9 ± 4.3	10.8 ± 2.2
(relative to the total area, %)	(0.85)	(0.92)

Sample-based results for Washington DC-Baltimore

	Washington DC	Baltimore
Active constructions	78%	86%
Commercial	52%	46%
Residential	27%	21%
School (new/renovation)	8%	9%

Commercial

Construction of a new school

Portables (schools)

2019

Change detection

Construction permits

Contributions

- Showed that the performance of the OSCD-trained model varies with location
 - Implication on the number of samples for deriving unbiased area estimates
- Characterized changes in the Washington DC Baltimore area using OSCD-trained model and samples
- Emphasized the "classification-mapping-area estimation" workflow
 - Direct estimation of areas from maps (pixel counting) is biased
 - Statistically rigorous approach to get unbiased estimates of areas