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Subglacial Melt Production

(NSIDC, 2018)
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Importance of Subglacial Water

• Movement of water linked to 
transient glacier flow acceleration

• Discharges of subglacial water 
linked to enhanced melting at the 
grounding line

• Subglacial water discharge linked 
to nutrient mixing under ice 
shelves

• The presence, location, and 
movement of subglacial water are 
first order controls of Antarctic 
mass balance



Validating Subglacial Melting Rates

(Priscu et al., 2021)

• Direct observations of subglacial 
system difficult due to thickness of ice

• Only direct observations are from deep 
drilling operations

• Subglacial melt is predominantly 
constrained by models

• Currently, there is no method of 
validating subglacial melt production



Subglacial Lakes

Kohler (2007)

Horgan et al., (2012)



Thwaites Lake System

(Malczyk et al., 2020)

(Malczyk et al., 2020)

(ESA, 2017)
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Objectives & Aims

1. Observe all 
active lakes 

across 
Antarctica. 

3. Compare 
and contrast 

recharge rates

2. Model 
inwards flux 
for each lake

Can observing the recharge period of active subglacial 
lakes be used as a proxy for subglacial melt production?



Method: Observing Subglacial Lakes

Siegfried & Fricker (2018)

• Swath processed CryoSat-2 elevations 
were collected for all known lakes 
existing within the SARin mask.

• A timeseries of elevation change was 
created for all lakes.

• If a lake displayed a clear period of 
recharge (i.e elevation gain following a 
drainage event), recharge rates were 
extracted using a linear fit.

• Masks were updated by running a rate of 
change (dhdt) algorithm



Method: Subglacial Melting Rates

Maule
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Frictional Heating
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Vertical Dissipation
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• Melting rates across Antarctica were calculated, with four geothermal heat flux 
realizations, (Shen, Shapiro, Maule, Martos), frictional heating, and vertical dissipation.



Method: Modelling Recharge Rates

• Routing maps across Antarctica created 
with three methods, forced over our four 
melting maps:
 TopoToolBox
 Le Brocq
 4D Antarctica Flow Model

• 12 estimates of recharge rates for each 
lake collected. Allows to compare 
impact of heat flux and routing
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Method: Constraining Melt Production

Vg

Volume gain = Flux in – Flux out

?

Altimetry

Routing Model

Melt invalidated if Fluxin
less than Volume Gain

Volume gain ≤ Flux in



Method: Constraining Melt production 
over Multiple Lakes

Vg

Vg

Vg

Sum of Volume gain = Flux in – Flux out

Melt invalidated if Fluxin < 
sum of Volume Gain



Method: Constraining Melt production 
(special case)

Vg

Vg

Vg

Sum of Volume gain ≈ Flux in

Melt Validated if Fluxin ≈ 
sum of Volume Gain

Subglacial 
system blocked



Results: Recharging Lakes
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Case Study 1: Mercer & Whillians
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Case Study 2: Cook E2
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(McMillian et al., 2013)



Case Study 3: Thwaites
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Results: Other melting products
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Slessor 2
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Conclusions

• Developed a new novel technique for observing the behaviour of 
subglacial melting rates using remote sensing

• Modelled rates of recharge are able to account for those derived via 
altimetry, effectively validating all four of our melting estimates.

• 4D Antarctica Flow Model appears to be the most robust routing 
approach.

• The only expectation is at Cook E2, where unknown processes are likely 
feeding the lakes uplift
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