Constraining Subglacial Melt Production using Subglacial Lake

George Malczyk¹, Noel Gourmelen¹, Mauro Weder², Martin Wearing¹, Daniel Goldberg¹, Carolyn Michael³

THE UNIVERSITY

1: School of Geosciences, University of Edinburgh 2: Laboratory of Hydraulics, Hydrology & Glaciology, ETH Zurich 3: Farthwaye

Activity

THE UNIVERSITY of EDINBURGH School of GeoSciences

Edinburgh, Earth and Environment Doctoral Training Partnership

4D Antarctica

Subglacial Melt Production

Importance of Subglacial Water

LETTERS

Increased flow speed on a large East Antarctic outlet glacier caused by subglacial floods

LEIGH A. STEARNS^{1*}, BENJAMIN E. SMITH² AND GORDON S. HAMILTON¹ ¹Climate Change Institute, University of Maine, 5790 Bryand Global Science Center, Orono, Maine 04469, USA ²Applied Physics Laboratory, University of Washington, 1013 NE 40th Street, Seattle, Washington 98105, USA *e-mail: leigh.stearns@maine.edu.

Published: 06 October 2013

Evidence from ice shelves for channelized meltwater flow beneath the Antarctic Ice Sheet

Anne M. Le Brocq Z, Neil Ross, Jennifer A. Griggs, Robert G. Bingham, Hugh F. J. Corr, Fausto Ferraccioli, Adrian Jenkins, Tom A. Jordan, Antony J. Payne, David M. Rippin & Martin J. Siegert

Nature Geoscience 6, 945–948 (2013) Cite this article

- Movement of water linked to transient glacier flow acceleration
- Discharges of subglacial water linked to enhanced melting at the grounding line
- Subglacial water discharge linked to nutrient mixing under ice shelves
- The presence, location, and movement of subglacial water are first order controls of Antarctic mass balance

Validating Subglacial Melting Rates

- Direct observations of subglacial system difficult due to thickness of ice
- Only direct observations are from deep drilling operations
- Subglacial melt is predominantly constrained by models
- Currently, there is **no method** of validating subglacial melt production

Subglacial Lakes

THE UNIVERSITY of EDINBURGH

Kohler (2007)

Horgan et al., (2012)

Thwaites Lake System

THE UNIVERSITY of EDINBURGH

⁽Malczyk et al., 2020)

Can observing the recharge period of active subglacial lakes be used as a proxy for subglacial melt production?

Method: Observing Subglacial Lakes

- Swath processed CryoSat-2 elevations were collected for all known lakes existing within the SARin mask.
- A timeseries of elevation change was created for all lakes.
- If a lake displayed a **clear period of recharge** (*i.e elevation gain following a drainage event*), recharge rates were **extracted using a linear fit**.
- Masks were updated by running a rate of change (*dhdt*) algorithm

Method: Subglacial Melting Rates

THE UNIVERSITY of EDINBURGH

• Melting rates across Antarctica were calculated, with four geothermal heat flux realizations, (Shen, Shapiro, Maule, Martos), frictional heating, and vertical dissipation.

Method: Modelling Recharge Rates

THE UNIVERSITY of EDINBURGH

- Routing maps across Antarctica created with three methods, forced over our four melting maps:
 - TopoToolBox
 - Le Brocq
 - 4D Antarctica Flow Model
- 12 estimates of recharge rates for each lake collected. Allows to compare impact of heat flux and routing

Method: Constraining Melt Production

Method: Constraining Melt production over Multiple Lakes

 V_{g}

THE UNIVERSITY of EDINBURGH

FILIXin

Vg

Sum of Volume gain = Flux in – Flux out

Vg

Melt invalidated if Flux_{in} < sum of Volume Gain

Flux_{out}

Method: Constraining Melt production (special case)

Vg

THE UNIVERSITY of EDINBURGH

FILIXin

'V_g

Sum of Volume gain ≈ Flux in

Melt Validated if Flux_{in} ≈ sum of Volume Gain

Vg

Subglacial system blocked

Results: Recharging Lakes

Case Study 1: Mercer & Whillians

USLC

SLC

SLM

Case Study 2: Cook E2

Case Study 3: Thwaites

Results: Other melting products

Results: Global Recharge Rates

- Developed a new novel technique for observing the behaviour of subglacial melting rates using remote sensing
- Modelled rates of recharge are able to account for those derived via altimetry, **effectively validating** all four of our melting estimates.
- **4D Antarctica Flow Model** appears to be the most robust routing approach.
- The only expectation is at **Cook E2**, where unknown processes are likely feeding the lakes uplift