

Discharge accelerations in Antarctica inferred from satellite gravimetry

Theresa Diener^{1,2}, Ingo Sasgen¹, Cécile Agosta³, Johannes Fürst², Matthias Braun², Hannes Konrad⁴, Xavier Fettweis⁵

Session A9.04.2, 26 May 2022, 11:10 am, ESA LPS 2022, Bonn, Germany

Motivation: constraint on projections?

Possible Antarctic contribution

Global mean sea level change relative to 1900

IPCC, 2021 AR6

Lowry et al. 2021

Mass changes in Antarctica from GRACE/GRACE-FO

Discharge estimation

Direct estimate (mass budget approach)

Indirect method

GRACE/GRACE-FO

mass storage Surface-mass balance rate observations

$$G/G-FO = \int (SMB + D)$$

Rate of ice-dynamic discharge

Mass acceleration $G/G-FO = S\dot{M}B + \dot{D}$ ~ accumulation rate ~ \dot{v} Ice stream acceleration

Example: West Antarctica

D~= GRACE/GRACE-FO – SMB

SMB model estimates

- ERA-5 reanalysis

 (total snowfall, minus snowmelt and evaporation)
- MARv3.6 simulations with different lateral forcing (ECMWF ERA-Interim, MERRA2 and JRA-55)

GRACE/GRACE-FO observations

- 'homemade' solution combination
 (JPL RL06, GFZ RL06 and CSR RL06)
- Comparison to gridded products (TUD-GravIS, CSR Level 3 data)

Rolling window trends and acceleration differences

SMB systematic

Monthly differences of detrended data → Progatation to trend and acceleration

Differences of trends and accelerations between products Propagation of coefficient uncertainties to trends and accelerations

SMB stochastic

Total discharge uncertainty

systematic

stochastic

Selection of SMB model

Interannual mass variations (no trend, no acceleration)

Intra-basin mass correlation and climatic drivers

Between basins

With climate indices

Mass change acceleration and uncertainties

Uncertainty components of acceleration

→ SMB systematic uncertainties are dominant

* Barletta et al. 2018

Regional discharge acceleration

Regional discharge acceleration

Regional discharge acceleration

- Indirect discharge acceleration estimate possible from GRACE/GRACE-FO and SMB, with similar accuracy as the direct approach
- Accuracy limited by SMB uncertainties mainly, but reconciliation possible
- Amundsen Sea Embayment and Bellingshausen Sea region confirmed dominant sources of dynamic acceleration
- GRACE/GRACE-FO mass loss accelerations apparent in East Antarctica caused mainly by SMB variations
- Extrapolation suggests contribution of 7.6 ± 2.9 cm to sea-level rise by 2100, with discharge acceleration (4.7 ± 2.8 cm acceleration only)
- More than two times larger than the purely linear extrapolation of current mass loss trends (2.9 ± 0.6 cm only linear extrapolation)

frontiers in Earth Science

Front. Earth Sci., 24 December 2021 | https://doi.org/10.3389/feart.2021.741789

😤 SECTION ABOUT ARTICLES RESEARCH TOPICS FOR AUTHORS - EDITORIAL BOARD 🕑 🔊 🗛 ARTICLE ALERTS

Cryospheric Sciences

< Articles

EDITED BY

ORIGINAL RESEARCH article

Thomas V. Schuler University of Oslo, Norway

REVIEWED BY

Jonathan L. Bamber University of Bristol, United Kingdom

Anthony MEMIN Université Côte d'Azur, France

The editor and reviewers' affiliations are the latest provided on their Loop research profiles and may not reflect their situation at the time of review.

TABLE OF CONTENTS

Abstract

1 Introduction

2 Materials and Methods

3 Results

Acceleration of Dynamic Ice Loss in Antarctica From Satellite Gravimetry

🎬 Theresa Diener^{1,2}, 🌉 Ingo Sasgen²*, 🔄 Cécile Agosta³, 🍟 Johannes J. Fürst¹, 🎊 Matthias H. Braun¹, 🔄 Hannes Konrad⁴ and 📄 Xavier Fettweis⁵

¹Department of Geography and Geosciences, Institute of Geography, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany

²Division of Glaciology, Alfred-Wegener-Institut Helmholtz-Zentrum Für Polar- und Meeresforschung, Bremerhaven, Germany
 ³Laboratoire des Sciences du Climat et de l'Environnement (LSCE), Gif-sur-Yvette, France
 ⁴Satellite-based Climate Monitoring, Deutscher Wetterdienst, Offenbach am Main, Germany
 ⁵Department of Geography, SPHERES research unit, University of Liège, Liège, Belgium

The dynamic stability of the Antarctic Ice Sheet is one of the largest uncertainties in projections of future

https://doi.org/10.3389/feart.2021.741789

Comparison to IMBIE2 assessment

Discharge rate estimate

Mass change 2002-2017 Discharge indirect (This study) © Discharge direct (R19) SMB (ERA-5) Net balance (GRACE)

Acceleration of glacial-isostatic adjustment

Combination and inversion using spectral methods

