

Investigating the large rise of atmospheric CH₄ in 2020 using TROPOMI observations and TOMCAT chemical transport model

Emily Dowd

School of Earth & Environment, University of Leeds

Email: <u>eeed@leeds.ac.uk</u>

Twitter: @emily_dowd_

Co-Authors:

Christopher Wilson, National Centre for Earth Observation, School of Earth & Environment, University of Leeds **Martyn Chipperfield**, National Centre for Earth Observation, School of Earth & Environment, University of Leeds **Emanuel Gloor**, School of Geography, University of Leeds

Why is methane important?

UNIVERSITY OF LEEDS

- Second most important greenhouse gas after CO₂
- Anthropogenic emissions have contributed an extra 23% to radiative forcing in the troposphere
- Variations of global methane are poorly understood

Sources

Wetlands 194[155-217] Tg CH₄ yr⁻¹

Agriculture & Waste 227[205-246] Tg CH₄ yr⁻¹

Biomass Burning

28[25-32] Tg CH₄ yr⁻¹

Fossil Fuels 108[91-121] Tg CH₄ yr⁻¹

Sinks

Main sink of methane is the hydroxyl radical(OH)

Chemical reactions in atmosphere 531[502-540] Tg CH₄ yr⁻¹

Soil Uptake 40[37-47] Tg CH₄ yr⁻¹

Total Sink = 571[540-585] Tg CH_4 yr⁻¹

(Saunois et al. 2020)

TROPOMI

2020

1700 1725 1750 1775 1800 1825 1850 1875 1900 XCH₄ (ppb) 2020 mean column CH₄ from TROPOMI

- O. Schneising et al. 2019 retrieval algorithm
- 0.5 x 0.5 degree grid
- Daily data aggregated to monthly mean 2018-2020

TOMCAT

2020

1700 1725 1750 1775 1800 1825 1850 1875 1900XCH4 (ppb) 2020 mean column CH₄ from TOMCAT with TROPOMI averaging kernels.

- TOMCAT is a 3D chemical transport model
- Surfaces fluxes were taken from inversions which assimilated NOAA surface observation sites
- Model was run at 2.8° x 2.8°, 60 vertical levels, annually repeating offline OH fields

UNIVERSITY OF LEEDS

• TROPOMI averaging kernels applied

TROPOMI & TOMCAT 2018-2020

- XCH₄ increasing from 2018-2020
- Areas of high CH₄ include northern Africa, India, Bangladesh and China

- TOMCAT captures surface CH₄ well due to assimilation of surface observations
- TOMCAT overestimating total column CH₄
- Areas of high CH₄ include northern Africa, India, China and North America

UNIVERSITY OF LEEDS

TOMCAT Latitudinal Bias Correction

- Global mean bias correction shows latitudinal bias
- Calculated 2nd order polynomial fit for latitudinal bias correction
- TOMCAT still overestimates in most of Northern Hemisphere but biases are now always within ±15 ppb instead of ±30 ppb
- The latitudinal bias correction has been applied TOMCAT in the following analysis

Global CH₄

- The model captures the seasonal cycle and long term trend of CH₄ well when compared with TROPOMI
- The global annual increase for TROPOMI is 14.9 ppb and TOMCAT is 15.8 ppb in 2020
- NOAA observed an annual increase of 15.3 ppb in 2020

What is driving the large increase in 2020? 2020 Annual Increase Relative to the Global Mean Annual Increase

- Latitudinal variation in annual increase
- Most variations in the Northern Hemisphere driving the increase in 2020

TOMCAT Relative Annual Increase in 2020

- $= \underbrace{ \begin{array}{c} \hline \\ -30 \end{array} \\ -30 \end{array} } \underbrace{ \begin{array}{c} -20 \end{array} } -10 \\ CH_4 (ppb) \end{array} } \underbrace{ \begin{array}{c} \hline \\ -30 \end{array} } \underbrace{ \begin{array}{c} -20 \end{array} } -10 \\ CH_4 (ppb) \end{array} } \underbrace{ \begin{array}{c} -20 \end{array} } \underbrace{ \begin{array}{c} -20 \end{array} } -10 \\ CH_4 (ppb) \end{array} } \underbrace{ \begin{array}{c} -20 \end{array} } \underbrace{ \begin{array}{c} -20 \end{array} } -10 \\ CH_4 (ppb) \end{array} } \underbrace{ \begin{array}{c} -20 } \underbrace{ \end{array} } } \\ } \underbrace{ \begin{array}{c} -20 \end{array} } \underbrace{ \begin{array}{c} -20 } \underbrace{ \end{array} } \underbrace{ \begin{array}{c} -20 } \underbrace{ \end{array} } \underbrace{ \begin{array}{c} -20 } \underbrace{ \end{array} } \underbrace{ \end{array} } \underbrace{ \begin{array}{c} -20 } \underbrace{ \end{array} } \underbrace{ \end{array} } } \underbrace{ \begin{array}{c} -20 } \underbrace{ \end{array} } \underbrace{ \end{array} } \underbrace{ \begin{array}{c} -20 } \underbrace{ \end{array} } \underbrace{ \begin{array}{c} -20 } \underbrace{ \end{array} } \\ } \underbrace{ \end{array} } \underbrace{ \end{array} } \\ } \\ } \underbrace{ \end{array} } \underbrace{ \end{array} } \\ } \\ } \underbrace{ \end{array} } \\ } \underbrace{ \end{array} } \underbrace{ \end{array} } \\ \\ } \underbrace{ \end{array} } \\ \\ } \underbrace{ \end{array} } \underbrace{ \end{array} } \underbrace{ \end{array} } \\ \\ \\ } \underbrace{ \end{array} } \\ \\ \\ \\ } \underbrace{ \end{array} } \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array}$ } \bigg } \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array}
- TOMCAT does not capture large increases in Africa & western Canada
- TOMCAT captures increase over Russia but it is not

as large as TROPOMI

South Sudan

- TROPOMI shows large increases in CH₄ September,
 October & November (SON) in 2019 and 2020
- Annual peaks in TOMCAT are earlier than TROPOMI
- Pandey et al. (2020) and Parker et al. (2020) find that WetCharts does not capture Sudd seasonal cycle
- Lunt et al. (2021) large enhancements of CH₄ during large positive anomalies in the 2019 short rains season (October-December) and these continued into 2020

Uganda

- TROPOMI shows large increases in CH₄ between
 November-January, with largest increase in 2020
- TROPOMI & TOMCAT follow the same seasonal cycle
- TOMCAT annual peaks are too low in 2019 and 2020
- Lunt et al. (2021) found a positive precipitation anomalies OND 2019
- High release rates from dam controlling Lake
 Victoria outflow in 2020

Canada & Alaska

- Higher concentrations in the east where more wetlands are situated
- TOMCAT captures CH₄ well when compares with TROPOMI
- Islam et al. (2021) found, using GOSAT, that wetlands and oil and gas emissions are controlling the growth rate during 2009-2019 in western Canada
- Scarpelli et al. (2021) produced a gridded inventory of anthropogenic emissions and eastern Canada emissions are mostly from livestock along the US/Canadian border

Monthly Mean XCH₄ – Canada & Alaska

Russia

UNIVERSITY OF LEEDS

- TOMCAT captures CH₄ variation but overestimates
- 2019 and 2020 had large wildfire seasons
- Cherepanova et al. (2020) found using TROPOMI and MODIS burnt area that wildfires in previous years could be contributing to increased methane in subsequent years

- Large global annual increased in 2020 shown by NOAA surface observations (15.27 pbb), TROPOMI (14.87 ppb) and TOMCAT (15.79 ppb)
- TOMCAT shows a latitudinal bias when compared with TROPOMI
- Areas with large annual increase in 2020 include: South Sudan, Uganda, Canada & Alaska and Russia
- TOMCAT does not capture large concentrations in 2020 over South Sudan and has mismatched seasonal cycle
- From the selected areas it seems wetlands are a large contributor to the increase in CH₄ during 2020

Next Steps

- Compare TROPOMI with TOMCAT using GOSAT inversions better top down emissions
- Develop a nested grid model for TOMCAT in order to do high resolution comparisons with TROPOMI

Get in Contact: Emily Dowd

Email: <a>eeed@leeds.ac.uk Twitter: @emily_dowd_

UNIVERSITY OF LEED

Back Up Slides - What is driving the large increase in 2020?

Figure: Annual increase in CH₄ in 2020 relative to the global mean annual increase in 2020

Back Up Slides – TOMCAT Global Mean Bias Correction

TROPOMI – TOMCAT (Global Mean Bias Removed)

XCH₄ (ppb) Figure: Difference between TROPOMI and TOMCAT annual mean column CH_4 (ppb) with global mean bias removed from TOMCAT.

- Global mean bias subtracted from TOMCAT
- TOMCAT overestimates in large parts of the Northern Hemisphere (NH)
- TOMCAT underestimates more in in NH, particularly over Africa and China in 2020
- Shows a latitudinal bias

Back Up Slides - Emissions

 Inversion of surface observation sites does not capture high emissions of South Sudan and Uganda.

2020 annual increase relative to global annual increase

• Emissions don't capture large methane emissions over Africa

Back Up Slides – Temperature & Precipitation

Back Up Slides – Temperature & Precipitation

