Recent changes in global CH₄ emissions constrained by TROPOMI and IASI data

Sander Houweling (VUA/SRON), Jacob van Peet (VUA), Tonatiuh Nunez Ramirez (MPI-BGC), Julia Marshall (DLR), Ilse Aben (SRON), Michael Buchwitz (iUP), Cyril Crevoisier (LMD), Tobias Borsdorff (SRON), Alba Lorente Delgado (SRON), Richard van Hees (SRON), Brian Kerridge (RAL), Diane Knappett (RAL), Nicolas Meilhac (LMD), Christian Retscher (ESA), Oliver Schneising (iUP), Richard Siddans (RAL), Steffen Vanselow (iUP), Lucy Ventress (RAL)

CH₄ growth rate & progress towards Paris goals

COVID-19 & atmospheric composition

- Shift in the NO₂/CO emission balance
- Possible impact on global OH

Stevenson et al (2021):

methaneplus.eu

METHANE+

sufficient to explain the recent CH₄ growth

⇒ Atmospheric monitoring is essential, as emission inventories alone are insufficient to keep track of methane!

esa

0.0 0.0 0.0 0.1 0

0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.1 0.2 0.3 0.5 1.0 1.5 3.0 6.0 10.0 15.0 30.0 mg/m²/da

vrije Universiteit

Methane+ retrieval: TROPOMI

Retrieval developments => improved coverage

vrije Universiteit

Methane+ retrieval: TROPOMI

Retrieval accuracy => Reduced surface albedo dependence

Methane+ retrieval: IASI

• Updated time series LMD & RAL retrieval

RAL Joint SWIR-TIR retrieval (TROPOMI-IASI):

Inverse modelling in ESA Methane+

- Inversion systems: TM5-4DVAR, Jena Carboscope
- Setup: following the CAMS reanalysis
- Datasets: TROPOMI (Operational, SRON scientific, iUP)

IASI (LMD, RAL)

Combined SWIR-TIR 0-6 km (RAL)

- TM5-4DVAR: extended with OH optimization (global annual scaling factor)
- Time window: 2018/05/01 2021/01/01 (excluding spin-up/spin-down)

Latitudinal bias correction

• Bias = Satellite XCH₄ – Inversion optimized XCH₄ using surface data

Inversion validation using surface measurements

TROPOMI SRON without bias corr.

TROPOMI SRON with bias corr.

Joint SWIR-TIR 0-6 km with bias corr.

Bias correction works well, but important residuals remain for the joint SWIR-TIR retrieval

Inversion validation using surface measurements

TROPOMI SRON without bias corr.

TROPOMI SRON with bias corr.

Joint SWIR-TIR 0-6 km with bias corr.

Bias correction works well, but important residuals remain for the joint SWIR-TIR retrieval

TM5-4DVAR: 2020 – 2019 flux difference

• Note: inversions optimize global & annual OH

TM5-4DVAR: 2020 – 2019 flux difference

• Note: inversions optimize global & annual OH

Summary

- Methane+: New updated XCH₄ data available from TROPOMI and IASI
- Inversion codes have been developed that make use of these data
- Inversions focused on the 2019 2020 CH₄ increase
- CH₄ sources or sinks are 'blamed' for the 2020 increase depending on the dataset that is used
- Joint SWIR-TIR retrieval is a promising development, but the implementation in inversions needs further analysis

