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GHGSat (https://www.ghgsat.com/en/)

A small, Canadian company that develops and launches its own satellites
to monitor methane emissions

* GHGSat-D (Claire) launched in 2016 -- Demonstration and some commercial
 GHGSat-C1/C2 (lris/Hugo) launched in 2020/21  -- First commercial sensors
» C3-C5 successfully launched May 25, 2022

* Plan to launch C6-C12 by end of 2023 (with C12 being for CO, emissions)

These are micosatellites (15 kg); high-spatial resolution (25-50 m); acquisition currently
limited to one ~12x12 km? scene per orbit (~450 scenes per month per satellite)

GHGSat uses Fabry-Perot spectrometers that observe reflected sunlight spectra in the
shortwave IR, 1.6 um

Instrument and algorithm paper, and emissions from GHGSat-D published in the scientific
literature

 First results from C1 should be published soon


https://www.ghgsat.com/en/
https://spacenews.com/ghgsat-to-launch-three-spacecraft-on-falcon-9/

Goals of this study

» To better understand GHGSat capability for methane emissions monitoring over Canada;
to accomplish this:

* Quantify the precision of the retrieved (excess) methane, the emissions detection limit, and
other important quality parameters

» Use a combination of GHGSat data and plume modelling, combined with different emissions
algorithms

* Address how GHGSat would support applications such as Canadian regulatory reporting

» Currently (May 2022), ECCC has acquired ~140 scenes for analysis

« Some from a European Space Agency-sponsored project “Evaluation of GHGSat-Iris
observations of methane for emissions monitoring over Canada”; other from contracts

« Roughly equal numbers from GHGSat-C1 (C1) and GHGSat-C2 (C2)
» Of the 140, 5 of these scenes have a plume detected; 5 others are “maybe”



Best Example: Kindersley, Saskatchewan — 13 June 2021 — plume detected
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Scene analysis

* Precision is estimated from the excess-methane
scenes

» Assume that the variability in the excess methane
across a scene is dominated by random errors from the
iInstrument and retrieval

» Calculate the standard deviation or RMS over some
portion of the scene

» Use this median as the precision

dMove 1 x 1 km? box around over domain; Require >1/2 of pixels within
box to be “good”; Allows for real variability, or larger scale effects
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C1 shows worse precision with low
Sun; C2 less obvious
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« Scenes were fit to a multi-linear model
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Scene analysis

« The C1 multi-linear fit yi7eI2dls, for o in %:
o= —2.58+222u+'—— 10.14 1 + 27.35 z

This indicates precision improves W|th larger /
SZA, until about 56°, where is gets worse

Going from a z of 0 to
0.15 km makes the

This means an increase in albedo of 0.1 leads precision worse by 4%

to roughly a 1% improvement in precision
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Scene analysis
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Downwind Distance [km]
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Calculating Emissions

« Multiple approaches will be used to calculate emissions on both real and simulated GHGSat
observations; these all require wind information which is obtained from a forecast or reanalysis

« Initially we are using a variant of the Integrated Mass Enhancement method (IME)

e.g., Kindersley, 13 June plume, rotated so wind out of north  An initial effort is to explore an IME method
Excess methane [@Q =m-u/x]

» Bias removal using a plane (no plume mask), fit to
the excess methane using data within 2 km, but
outside of the plume zone box

100

150 600

o
I

500

C

400 r

Emissions for box length x_[kg/hr]

0.5¢ 0 300 |
200
E(x,)
100 — — —mean over 250-1000 m downwind
1 50 Maximum over 250-1000 m downwind
-0.5 0

0 0.2 0.4 0.6 0.8 1
Box length, X, [km]



Emissions

* Source of winds can be important
Lachenaie Landfill, 24 July 2021

Comparison of wind speed from different centres
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Creating synthetic GHGSat observations

* Purpose: To better understand GHGSat emission uncertainties and detection limits,
particularly at locations where we do not have actual observations

« Use the ECCC emergency response plume model*, and add noise appropriate for that
location/observation, date/time, and satellite - apply emissions algorithms

* MLDPn (Modéle Lagrangien de dispersion de particules d'ordre n), doi:10.1080/07055900.2014.1000260
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https://www.tandfonline.com/doi/full/10.1080/07055900.2014.1000260

Summary and Next Steps

Sun angle, albedo, and terrain roughness explain most of the scene-to-scene variability in
precision and can be used to predict the precision at other locations

Integrate additional emissions approaches into analysis and conduct more thorough
comparisons

Generate more synthetic GHGSat scenes to test emissions algorithms and estimate
detection limits

Possibly acquire additional scenes during summer; possibly from newer (C3-C5) satellites

Co-ordinating GHGSat overpass with blowdown event — comparing bottom-up emissions
with different algorithms applied to GHGSat observations

Place results in context of Canadian methane emissions
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