Methane point source detection and quantification from high-resolution satellite observations and deep learning methods

<u>**Cristina Ruiz Villena**</u>^{1,2}, Peter Joyce^{3,4,5}, Yahui Wang^{4,5}, Rocío Barrio Guilló¹, Alex Webb^{1,2}, Harjinder Sembhi¹, Emanuel Gloor³, Martyn P. Chipperfield^{4,5}, Christopher Wilson^{4,5}, Hartmut Boesch^{1,2}

- 1. School of Physics and Astronomy, University of Leicester, Leicester, United Kingdom
- 2. National Centre for Earth Observation, University of Leicester, Leicester, United Kingdom
- 3. School of Geography, University of Leeds, Leeds, United Kingdom
- 4. National Centre for Earth Observation, University of Leeds, Leeds, United Kingdom
- 5. School of Earth and Environment, University of Leeds, Leeds, United Kingdom

ESA Living Planet Symposium - 26th May 2022

Motivation

Global average CH4 concentrations

Source: World Meteorological Organisation (2020)

Methane is the second most important greenhouse gas and it plays an important role in climate change.

Cristina Ruiz Villena

Natural Environment Research Council

Sources of methane

Oil and gas – great potential for mitigation

A small number of very strong sources (*superemitters*) contribute a large fraction of total emissions.

National Centre for Earth Observation

NATURAL ENVIRONMENT RESEARCH COUNCIL

Cristina Ruiz Villena

*May contain NGL Fractionation equipment 7. Natural Gas Liguids (NGL) Supply

*Data collection began in RY 2016

Production & Processing 1. Onshore Petroleum & Natural Gas

2. Offshore Petroleum & Natural Gas

3. Total Crude Oil to Refineries

Gathering and Boosting

Petroleum Refinina

6. Gas Processing Plant

Production

Production

4.

5.

Natural Gas Transmission & Storage

- 8. Transmission Compressor Stations
- 9. Underground Storage
- 10. Liquified Natural Gas (LNG) Storage
- 11. LNG Import-Export Equipment
- 12. Natural Gas Transmission Pipeline *Data collection began in RY 2016

Distribution

13. Large End Users

- 14. Natural Gas Distribution
- 15. Natural Gas & Petroleum Supply to Small End Users

Subpart W: Emissions from petroleum & natural gas systems

Greenhouse Gas Reporting Program (GHGRP)

- Subpart Y: Emissions from petroleum refineries
- Subpart MM: CO₂ associated with supplies of petroleum products
- Subpart NN: CO₂ associated with supplies of natural gas & natural gas liquids
- Not reported under GHGRP

Environment Protection Agency (EPA) Petroleum and Petroleum MPORTS **Product Suppliers** ХΧ 5 EXPORTS IMPORTS Large end-user emissions reported under relevant subparts for other industries.

Synergy: global coverage vs high spatial resolution

Multispectral:

WorldView-3 (WV-3) Pixel size: $4 \times 4 \text{ m}^2$ 8 broad SWIR bands Spectral res.: 30-70 nm

5

Hyperspectral:

PRISMA

Pixel size: 30 x 30 m² Multiple SWIR bands Spectral res.: 12 nm

Similar satellites:

- Multispectral: Sentinel-2, Landsat-8
- GHGSat

crv2@leicester.ac.uk

University of Leicester

Methods for PRISMA and WV-3: retrieval and flux inversion

Data-driven retrieval

- Small number of singular vectors from the spectral Principal Component Analysis (PCA) describe background.
- Spectral CH₄ Jacobian describes radiance changes corresponding to methane enhancements.

Integrated Mass Enhancement (IME) flux inversion

- Source rate estimated from total **plume mass**, **wind speed**, and **plume length**.
- Generating the **plume mask** is one of the critical and most challenging steps.

Testing our methods with PRISMA WRF-LES simulations⁷

Earth Observation

Cristina Ruiz Villena | crv2@leicester.ac.uk

| University of Leicester

Case study 1: TROPOMI anomalies Turkmenistan

We calculate anomalies using Bremen XCH4 v1.5 2020 data.

Case study 1: TROPOMI anomalies Turkmenistan

Earth Observation

National Centre for

Case study 1: PRISMA

Cristina Ruiz Villena

Google maps

Case study 2: TROPOMI Poland coal mines

Average, wind-rotated methane enhancement over Polish coal region 2018-2020.

Some of the highest emitting coal mines in Poland 11

Finding PRISMA data over the region proved challenging and no plumes were found.

Case study 3: WV-3 Middle East oil/gas facility

National Centre for
Earth ObservationGoogle maps
(04/2020)NATURAL ENVIRONMENT RESEARCH COUNCIL

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Enhanced methane [parts per million]

Advanced methods: Machine Learning

IME = 1790.81 kg; L = 1143.15 m; Q = 10993.71 kg h-1

XCH4 vertical column [molecules cm-2] 1e

Traditional methods for isolating plumes have high **uncertainties** and are inconsistent for different scenes.

We are developing **machine-learning** models to improve plume detection and quantification using **WRF-LES simulated plumes for training**

Note: confidential, non-published material has been removed from this presentation.

Cristina Ruiz Villena | crv2@leicester.ac.uk

Take home messages

Anthropogenic methane emissions from oil and gas have large contributions to the methane budget but are often easily fixable.

We can use various **satellite observations** at different resolutions in **synergy** to find and quantify these emissions.

Machine learning can help us better find and isolate plumes. We have developed **deep learning** models to isolate and quantify emissions, with promising results.

Upcoming high-res satellites such as MethaneSat and CarbonMapper will add to the current capabilities.

Thank you! Contact: Email: crv2@leicester.ac.uk Twitter: @DrCristinaRuiz

Acknowledgements: funding from SPRINT, NSIP and NERC; partnership with Geospatial Insight.

