Quantifying localized carbon dioxide emissions from space: the CO2Image demonstrator

Anke Roiger¹, David Krutz¹, **Julia Marshall**¹, Friedemann Reum¹, Dietrich Feist¹, Klaus-Dirk Gottschaldt¹, Bastian Kern¹, Patrick Jöckel¹, Andreas Baumgartner¹, Claas Koehler¹, Günter Lichtenberg¹, Sander Slijkhuis¹, Carsten Paproth¹, Ilse Sebastian¹, Johan Strandgren², Jonas Wilzewski³, Leon Scheidweiler⁴, Christian Frankenberg⁵, André Butz⁴

Knowledge for Tomorrow

Understanding the problem

- We want to quantify anthropogenic emissions of CO₂ and CH₄ using atmospheric measurements
- The "easiest" problem is point source emissions of plumes, as described in the so-called "Red Report":
 - 1. Detection of hot spot
 - 2. Monitoring the emissions of the hot spot
 - 3. Assessing emissions changes against local reduction targets (still focusing on the hot spot)

4. Assessing the national emissions and changes with 5-year time steps

C0₂

An Operational Anthropogenic CO₂ Emissions Monitoring & Verification Support Capacity

* *

July 1, XCO₂ (ppm)

Sampling for one CO2M satellite for one day in July (cloud- and SZAfiltered)

Already at 2-km resolution, large point sources are visible (with no clouds and perfect measurements)

Power plants near Cologne with emissions of ~26 and 29 MtCO₂/yr

But there are plenty of smaller point sources as well...

CO2Image targets this problem with a high-resolution approach

• Gaussian plumes simulated for the city of Indianapolis, at the resolution of CO2Image and CO2M (from Strandgren et al., AMT, 2020)

Higher spatial resolution \rightarrow quantification of smaller point sources

- A higher sensitivity (down to 1 MtCO₂/year) means that a higher proportion of point sources would be quantifiable based on remote sensing measurements:
 - A sensitivity threshold of > 10 MtCO₂/year could resolve 24% of emissions from coal-fired powerplants worldwide
 - A sensitivity threshold of > 1 MtCO₂/year could resolve 88% of emission from coal-fired powerplants worldwide

Measurements in target mode

- Orbit altitude: 575 km
 - \rightarrow Inclination = 97.6618°
 - \rightarrow Orbital period T = 1.60033 h •
 - \rightarrow Orbits per day = 14.9969
 - \rightarrow Velocity = 7.57304 km/s

- Agility = ± 25° - along track - across track
- Integration time = 89 ms
- ≈ 5 targets per branch
 between 60°S & 60°N
 → time for repositioning

Benefits of fine (< 50 m) ground resolution:

- Enhanced concentration contrast
- Plume sampling by multiple ground pixels (plume detection via NO₂ is not required)
- Plume shape analysis for constraining turbulent dispersion

Drawbacks:

One \sim 50 km x 50 km scene

can be chosen from each of

these pink boxes

- Dense coverage on larger scales is not possible
- Operation restricted to "target mode", focusing on a few 50 km x 50 km scenes per orbit

Thus: conceived of as a "magnifying glass" to **complement measurements from CO2M** and other survey missions.

COSIS Instrument description

Mass	90 kg
Swath	50 km
Spatial resolution	50 m x 50 m
Spectral range	1982-2092 nm
FWHM (2.5 pix)	1.29 nm
Resolving power	1600
Aperture diameter	15.0 cm
f number	2.4
Optical efficiency (η)	0.48
Integration time	70 ms
Detector pixel area	900 μm²
Quantum efficiency (Qe)	0.8 e⁻ photon⁻¹
Dark current	1.6 fA pix ⁻¹ s ⁻¹
Readout noise	100 e ⁻
Quantization noise	40 e⁻

950 mm

- Measurement in SWIR-2 channel
- Spectral resolution optimized to maximize signal while minimizing correlations with surface spectral reflectance (see Wilzewski et al., AMT, 2020)
- Fast optics, large telescope, forward motion compensation

Overpass time

- A mid-morning overpass time of 10:30 is planned
- The morning is advantageous in terms of:
 - Less cloud cover
 - (slightly) lower mean winds
 - Sufficient light

Overpass time

- A mid-morning overpass time of 10:30 is planned
- The morning is advantageous in terms of:
 - Less cloud cover
 - (slightly) lower mean winds
 - Sufficient light
 - Less turbulence \rightarrow larger signals

Marshall et al., in prep.

Overpass time

- A mid-morning overpass time of 10:30 is planned
- The morning is advantageous in terms of:
 - Less cloud cover
 - (slightly) lower mean winds
 - Sufficient light
 - Less turbulence \rightarrow larger signals

True for turbulent scenes on the scale of 10s of meters – at the kilometer scale this is less critical!

Ongoing work: development and testing of AI-based plume detection and emission estimation methods

- Further developing MethaNet approach developed by <u>Jongaramrungruang et al. (2022)</u>, a CNN-based algorithm to deduce emissions with no information about wind speed provided (!)
- Training with less generic LES scenes
- Adapting to the scales relevant for our problem
- Considering impact of 3D plume geometry...

Ongoing work: analyzing the importance of non-nadir geometry

 Usually nadir geometry is assumed when interpreting retrieved L2 data $VZA = 0^{\circ}$. $SZA = 0^{\circ}$ $VZA = 0^{\circ}, SZA = 45^{\circ}$ • When the pixel scale is much smaller than the troposphere height, this can break down measured XCO₂ To the satellite Especially true for elevated plumes (like those from power plants) From the sun Cross-section of plume aloft This can result in horizontal smearing and/or displacement of the plume compared to the nadir case

Ongoing work: analyzing the importance of non-nadir geometry

- Example using WRF simulation of Jänschwalde at 200-m resolution
- Source: 24 MtCO2/yr
- May 21, 2018, 8:00-16:00 UTC

From Nicolas Tufel: submitted to IWGGMS

Simulations from Wolff et al., 2021

DLR.de • Chart 17

Ongoing work: compiling statistics about the frequency and extent of "smoke plumes" near point sources using Sentinel-2 data

- Applying identification and masking code developed by <u>Mommert et al. (2020)</u>
- Relevant for developing sampling strategy

Example: Wilhelmshafen

Conclusions

- CO2Image will provide high-resolution measurements of XCO₂ to quantify emissions from point sources > 1 MtCO₂/yr, and detect smaller sources (> 0.3 MtCO₂/yr)
- Complementary to global survey missions such as CO2M
- Public mission providing public, transparent data
- Planned launch in 2026
- (we can also measure methane)

