Simulation of the ATLID ATB and SR profiles using the COSPv2 lidar aerosol simulator and the E3SMv1 climate model

Marine Bonazzola, Hélène Chepfer, P-L. Ma, 26-05-2022 Laboratoire de Météorologie Dynamique, Paris

- CALIOP orbit
- 3. Use of the Aerosol simulator for ATLID

Outline

1. Principle of the COSPv2 Aerosol simulator : Simulation of a

2. A 3-month comparison of E3SM outputs and CALIOP data

Scattering Ratio profiles along the CALIOP orbit on the 20-03-2008

Principle of the COSPv2 Aerosol Simulator

INPUTS

60

- 0.7 0.6 0.5 0.4 0.2

0.8

Computation of the Scattering Ratio (SR0)

From a model on N vertical levels

Aerosol coefficients :
$$\alpha_a, \beta_a$$

•
$$ATB = (\beta_m(\lambda, z) + \beta_a(\lambda, z)) \cdot exp[-2\int_z^{TOA} (\alpha_m(\lambda, z') + \alpha_a(\lambda, z'))dz]$$

•
$$AMB(\lambda, z) = \beta_m(\lambda, z) \cdot exp[-2\int_z^{TOA} \alpha_m(\lambda, z')dz']$$

• $SR(\lambda, z) = \frac{ATB}{AMB}$

Computation of the Aerosol detection threshold

From a model

 α_a, β_a

- Presence of aerosols for SR>1.2 (nighttime)
- Higher threshold required for daytime ; lower threshold required at a coarser vertical resolution.

Computation of the model cloud mask

2.8
2.6
2.4
2.2
2.2
2.2
1.8
1.4
1.2
1

3

Computation of the cloud mask + aerosol detection threshold

From a model on N vertical levels

Aerosol coefficients : α_a, β_a

 The cloud mask and the threshold SR>1.2 are both applied on the SR0 field

E3SM/CALIOP comparison (20-03-2008 orbit)

(b) SR profiles 532 nm 20–03–08

- Simulated and observed clouds are in good agreement in the nudged E3SM simulations.
- Underestimation of aerosol concentrations near the surface
- Overestimation in the aerosol plume north of 20°N between 1 and 9 km.

3-Month Comparison of E3SM outputs and CALIOP data

- The maximum at 10°N is well reproduced.
- The maximum over the Southern Ocean does not appear : might be due to inaccurate simulation of sea spray aerosols.
- Rash et al. (2019) and Wang et al. (2020) also show an aerosol bias over the Southern Ocean.
- Emissions of sea salt and marine organics aerosols depend on the surface wind, that has a bias in the E3SM model.
- New Particle Formation (NPF) might be important in this region, but this process is not well represented in models.
- The SR maxima are underestimated by 1-1.5 below 500-800 m. Slight overestimation from this level up to 1.5-1.8 km.
- The underestimation of SR in the surface layer corresponds to an error of 50% on the AOD.
- Bias in the vertical distribution : too efficient vertical mixing in E3SM?

Importance of the cloud mask for comparing model and observed aerosols?

- The 3-month averaged SR2 field corresponds to the aerosol signal for each day (cloudy or not).
- The 3-month averaged SR3 field corresponds to the aerosol signal for clear-sky and partially cloudy days (the 100% cloudy days over 1x1 deg. grid cells are filtered out).
- If there is no 100% cloudy days in observations, no necessity to use the cloud mask (the sampling in model and obs. would be the same).
- However there are 100% cloudy days at some lacksquarelatitudes (Southern Ocean).
- Relative error of about 10% when no cloud ${\bullet}$ mask is used (due to sampling differences).
- Caveat : We use here a model cloud mask, slightly different form the observed cloud mask.

Differences between ATLID and CALIOP

	ATLID	CALIOP
Wavelength	355 nm	532/1064 nm
Horizontal resolution	282 m	Below 8.2 km : 330 m Above 8.2 km : 1 km
Vertical resolution	100 m	Below 8.2 km : 30 m Above 8.2 km : 60 m
Spectral capability	HSRL	no
Retrieved variables	extinction and backscatter profiles	ATB, SR

Constructing a cloud mask with ATLID consistent with the CALIOP cloud mask

- ATLID and CALIOP data can be used conjointly for inter annual studies if the SNR is similar in both datasets.
- Reverdy et al. 2015 : Hypothesis on the noise standard deviation of ATLID —> threshold of SR>1.84 at 355 nm for cloud detection
- What would be the equivalent for CALIOP? —> SR>5.51 at 532 nm (at the same 480 m vertical resolution)
- Why a smaller SR threshold at 355 nm than at 532 nm?
- No molecular absorption at 355 nm and 532 nm (except ozone at 532 nm)
- 5 times stronger molecular (Rayleigh) scattering at 355 nm than at 532 nm
- 5 times more 2-way molecular attenuation at 355 nm than at 532 nm
- Molecular attenuated backscatter ATBmol below 3 km : 2 times larger at 355 nm than at 532 nm
- Contribution of the cloud particles to the ATB : similar at 355 nm and 532 nm
- SR is 5 times lower at 355 nm than 532 nm.
- Thus the SR threshold to detect a cloud is 5 times lower at 355 nm than 532 nm

Defining an aerosol detectability threshold for ATLID consistent with the CALIOP threshold

- We make the assumption that the SNR is the same in both instruments
- We seek for a SR threshold that allows to detect the same amount of aerosols at 532 nm and 355 nm
- We find SR>1.42 at 532 nm; SR>1.12 at 355 nm (for the same resolution)
- Why a slightly lower threshold at 355 nm than at 532 nm?
- Molecular attenuated backscatter ATBmol \bullet below 3 km : 2 times larger at 355 nm than at 532 nm
- Contribution of the aerosol particles to the ATB : generally larger at 355 nm than at 532 nm
- Thus the two aerosol SR thresholds are closer to each other than the cloud SR thresholds

Aerosol extinction profiles with different hypotheses on the detection threshold

- ATLID is a HSRL : Can retrieve aerosols extinction and backscatter profiles
- EXT>1.1e-5 m⁻¹ (depends on the resolution)
- Which aerosols could we retrieve if the ATLID SNR was better than for CALIOP?

Intermediate instrument : Aerosol extinction threshold : EXT> 0.4e-5m⁻¹

Perfect instrument : Aerosol extinction threshold : EXT>0

• What would be the threshold on the aerosol extinction coefficient to retrieve the same amount of aerosol than in CALIOP?

CALIOP instrument : Aerosol extinction threshold : EXT> 1.1e-5m⁻¹

