Exploiting the power of EarthCARE synergy
through a suite of observation operators
for data assimilation ;] .
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More complex
microphysics? Radiation
+ Reaching critical point of permitting convection in global NWP How to initialise? interactions?
simulations (Wedi et al., 2020, JAMES). Observations at these Insufficient convective
km scales will be needed to both initialise and improve model. ® ‘ organisation?

O

High-res observations increasingly important for global NWP

GOES visible imagery IFS 9 km model imagery IFS 2.9 km model imagery
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Towards a suite of observation operators for EarthCARE within the IFS
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Using the Jacobian to highlight synergies between EarthCARE observations

* Inthe ECMWEF data assimilation system, tangent linear and adjoint versions of the
forward models are used to minimize the 4D-Var cost function.

« Adjoint code provides the Jacobian (sensitivity of the output of the observations
operator to its input).

« Comparing the Jacobians of the different EarthCARE observations can highlight
synergies between them:

Change in simulated observation
« (e.g., radar reflectivity, lidar

OH ( x) backscatter...)
d0x
\ Change in input to observation operator (e.g.,
rain water content, ice water content,

temperature...)




Assimilating Doppler and reflectivity removes attenuation ambiguities
Simulated radar reflectivity
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Rayleigh backscatter helps to differentiate between extinction and backscatter

» Jacobian for Extinction analogous to Doppler
Rayleigh backscatter profile « |-

Mie backscatter profile
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Rayleigh backscatter

50 100 150 200 250 300 350 400 450 500 5RO
X (points)

ﬁ 650 700
Mie backscatter at level 60 can be
increased by either reducing ice water
content in upper levels, or increasing ice

water content at level 60.

Rayleigh backscatter only sensitive to ice
water content above level of observation.

Smoother gradients preferred by 4D-Var!
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Verifying assimilation experiments using visible radiances

« Compare simulated visible radiances using FLOTSAM with MODIS observations
along A-train track before (FG) and after (AN) assimilation of radar reflectivity and
lidar backscatter (see our poster for more details on assimilation experiments)
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...and also improves fit to microwave radiances!

Channel Frequency (GHz) Peak sensitivity (hPa)
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Comparing simulated Doppler velocity with ground-based observations

_Super-cooled Ilgqld clouds have_ a strong radiative Macquarie Island — Southern Ocean
influence, yet difficult to constrain in models, partly due ‘
to lack of observations.

Macquarie Island Cloud and Radiation Experiment
(MICRE) observations provide a testbed for simulating
ice-phase cloud processes AND evaluating
EarthCARE simulators.

EarthCARE radar simulator placed in IFS single-
column model (SCM) to compare performances of
single- and double-moment microphysics schemes
with MICRE W-band radar (Gettelman et al., in prep)

What can comparing observed and simulated | | * Photo: Gregory Stone
Doppler velocity tell us about model processes?
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Simulating Doppler velocity appears to reveal model process deficiencies...

Less rimin
Riming happenln here! J

Observatlonsl speed (m/s)

Doppler velocity observed
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Lack of riming in model? -> Lack Fall speed too high! Too much
of super-cooled liquid water? rain?
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But, model does represent collection of super-cooled liquid cloud by water

~ Riming No riming
Observations,

\ Doppler veloclzi oberYed
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To simulate the Doppler velocity of ice-
phase particles more effectively, more
complexity is required, e.g.:

- Additional hydrometeor species
required for rimed snow/graupel (e.g.,
P3 scheme; Morrison and Milbrandt
2015) or can we diagnose ‘density
factor'? (see Mason et al., 2018).

« Physical representation of melting
process must be included for realistic
Doppler simulations. (Note: melting is
represented in IFS microphysics
scheme)

» Not representing increased fall-speed of rimed ice particles

Y
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Summary CPR radar reflectivity |

=15+ ZmVar IFS radar reﬂectmty (dBZ
A suite of observation operators for simulating &% 4 » ?
EarthCARE within IFS is now available. § o sl ""‘ *‘:ri b o ] urm:m-nml
CPR Doppler veloclty

If assimilated, Jacobian of observation
operators show Doppler velocity and Rayleigh
backscatter should complement radar
reflectivity and Mie backscatter.

Assimilating radar reflectivity and lidar
backscatter improves model analysis fit to
radiation observations across the spectrum.

To make Doppler velocity observations tractable £
for direct model evaluation, need to represent
variations in fall-speeds from microphysical
processes.

_c ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECA!

Latitude ('N)



	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Comparing simulated Doppler velocity with ground-based observations
	Simulating Doppler velocity appears to reveal model process deficiencies…
	But, model does represent collection of super-cooled liquid cloud by water
	Summary

