

TAKING THE PULSE OF OUR PLANET FROM SPACE

The ATLID L2a featuremask and optical properties profile processors

and Environment.

D.P Donovan, G-J van Zadelhoff, P. Wang, L. Labzovskii

KNMI

May 26, 2022

ESA UNCLASSIFIED – For ESA Official Use Only

Introduction

- Lidar extinction and lidar-ratios from space are not easy retrievals.
 - Low SNR (compared to terrestrial systems) → horizontal averaging but...
 - The inhomogeneous nature of clouds (and aerosols) → high resolution !
- A-FM and A-PRO are two ATLID L2a algorithms that cooperate in order to conduct a multi-scale approach to deliver aerosol and cloud properties.
 - -A-FM: High resolution target mask.
 - -A-PRO: Used A-FM to intelligently average/bin data to provide both aerosol and cloud properties.

Processor	A-FM (ALTID Feature Mask)	
Input Products	1. ATLID-L1	EARTHCARE
Output Products	 ATLID Featuremask Retrieved Lidar Surface pixels and detection of temporal gaps in observations Feature Free mean Co/Cross Mie & Rayleigh signals 	Royal Netherlands Meteorological Institute <i>Ministry of Infrastructure</i> and Environment.
Brief Description	signals	

Goals:

- 1. Retrieve a mask which detects regions of "significant returns" or "features". No difference between aerosols and clouds is made within the algorithm!
- 2. Retrieve information on high resolution, preferably a single shot mask, to enable binning strategies to increase SNR of signal (output is on the A-NOM spatial grid)

Calculation Steps:

- 1. Determine the lidar surface altitude
- 2. Calculate signal probability based on the measured signals and noise
- 3. Perform a Median Hybrid calculation to find the strong coherent structures within the image
- 4. Convolve the remaining signals iteratively to enhance signal to noise ratio.
- 5. Retrieve low signal features by fitting a Gaussian noise peak to the derived image histogram in order to distinguish signal from noise

ECARE Testing and Development Scenes Derived from Cloud-Resolving NWP model data

- Scenes have been built using ECSIM using Environment Canada's high-res global NWP model run at 0.25 km hor. res.
- Clouds/precip are handled by a two-mode bulk scheme (Milbrandt-Yau)
- No Aerosols in provided fields → Merge with ECMWF CAMS fields.

A-FM applied to Halifax Scene

*

Processor	A-PRO (ATLID Profile processor)	
Input Products	 FeatureMask ATLID L1 Auxiliary Met data 	
Output Products (reported on Joint standard Grid grid)	 Aerosol and cloud optical properties. Target Classification Aerosol type 	

Brief Description

- Two Step approach to deriving optical properties:
 - 1. "Conventional" HSRL techniques applied to smoothed fields.
 - 2. High resolution OE forward model retrievals aimed at clouds.
- Cloud/aerosol discrimination and aerosol typing based on using Backscatter thresholds as well as S and linear depolarization ratio.
- Cloud phase determination via layer integrated backscatter-vs-integrated depolarization ratio.

Target Classification (A-TC)

-Cloud/Aerosol separation based on combination of thresholds and, in the case of thin-ice-vs-aerosol, depol. and lidar-ratio

U. Wandinger has formalized a scheme for ECARE using certain base aerosol classes.

A-PRO applied to Halifax scene

cesa

Low Resolution Target Classification

→ THE EUROPEAN SPACE AGENCY

*

+

9

eesa

Testing using ALADIN observations

- AEL-FM and AEL-PRO have been adapted to ALADIN measurements !
 - Being implemented in the operational processor.
 - AEL-FM resembles A-FM more completely than AEL-PRO resembles A-PRO
 - E.g. Aeolus lacks depol. Measurements → No aerosol type determination and simplified ice/water discrimination.
- Validation is ongoing using:
 - Terrestrial Lidar data
 - Comparison with CALIPSO.
 - Comparison with OMI AOT.

____ ■ ■ = ___ ■ + ■ ■ 🔚 🔚 ___ ■ = = = 0 ▶_ ■ ■ 👫 = **+** = = m the european space agency

AEL-FM Example: Sept 14, 2019

÷.

11

*

AEL-PRO Example

Example Comparison with CALIPSO

Fig. 4. CALIPSO and ALADIN ATBs and extinction retrieval within an orbit section within a few 10s of km and 3.5 hrs on May 01, 2019.

AEL-PRO AOT-vs-OMI AOT (Sept 2019)

14

Summary

- A-FM and A-PRO have been developed over the past few years.
 - They have been tested primarily using synthetic data.
- AEL-FM and AEL-PRO have been developed based on A-FM and A-PRO
 - They are will become operational within the Aeolus OP this summer
 - Validation is ongoing using a variety of data streams
- Feedback between (A-PRO/A-FM ← → AEL-FM/AEL-PRO) has been working in both directions.
 - Good example of synergy (what ECARE is all about) even before ECARE launch !

💳 🔜 📲 🚍 💳 🛶 📲 🔚 🔚 🔚 📰 👬 🚍 🛶 🞯 🖕 📲 🚼 📰 📾 🏜 📦 🔶 • The European Space Agency

Development of a OE based solver. That cane be applied at different hor. resolutions.

$$\chi^{2} = \left[(Y_{i} - y_{i}) \right] \left[C_{i,j} \right]^{-1} \left[(Y_{i} - y_{i}) \right]^{t} + \left[(X_{i_{a}} - x_{i_{a}}) \right] \left[C_{a,i_{a},j_{a}} \right]^{-1} \left[(X_{i_{a}} - x_{i,a}) \right]^{t}$$

$$y = observations = (ATB_{Ray_1}....ATB_{Ray_{nz}}, ATB_{Mie_1}...ATB_{Mie_{nz}})$$

Y = Y(x) = forward modelled observations

$$x = \log state \quad \text{var} \, iables = \log(\alpha_1 \dots \alpha_{nz}, S_1 \dots S_{nz}, Ra_1 \dots Ra_{nz}, C_{lid})$$

$$X_a = a priori \ values = \log(S_{a,1}...,S_{a,nz}, Ra_{a,1}...,Ra_{a,nz}, C_{lid,a})$$

Effectively no constraint on extinction (other than being positive)

. .