## The Ground RFI Detection System (GRDS), A New Concept For RFI Detection In Earth Observation Missions





<u>R. Onrubia<sup>(1)</sup>, R. Oliva<sup>(1)</sup>,</u>

- A. P. Weston<sup>(2)</sup>, P. de Rosnay<sup>(2)</sup>, S. English<sup>(2)</sup>,
  - B. J. Barbosa<sup>(3)</sup>, I. Nestoras<sup>(3)</sup>
- C. A. Martellucci<sup>(4)</sup>, F. Jorge<sup>(4)</sup>, Y. Soldo<sup>(4)</sup>,

(1): Zenithal Blue Technologies, Barcelona, Spain
(2): ECMWF,
(3): RDA, Zurich, Switzerland,
(4): European Space Agency,



ECMWF

### Introduction

- Microwave passive remote sensing has been experiencing more and more instances of RFI
- RFI can vary widely in terms of intensity, extension, geographical regions, polarization, bandwidth, active duty cycle, etc.
- No single RFI algorithm is capable of detecting all RFI
- Best strategy is to use a combination of techniques and use the most of external information available



Credit: SMOS RFI team. ESAC







- GRDS is a system developed by ZBT, and RDA, and validated by ECMWF, under ESA contract 4000127267/19/NL/AF supervised by Antonio Martellucci. Its purpose is to detect low level RFI on EO data.
- The system has been developed with a flexibility in the design to be able to ingest data from any EO microwave missions (currently SMOS and AMSR2).
- It makes use of external and internal information to detect presence of RFI.
- It allows to configure the level of flagging to set the user preference between missing RFI and false alarm detection.





- Data ingested from multiple EO sensors and converted to a common data format
- Flags are combined and added to the original EO file
- RFI instances are added to an internal RFI databases
- RFI Detection thresholds are adjusted based on previous detections and external information, such as:
  - IEEE GRSS RFI Database
  - Population density map
  - Airports and Air navigation aids
- GRDS on purpose does not use NWP models in order to be NWP-independent.





- GRDS scans all observations using a library of RFI detection algorithms, including:
  - Intensity (HH, VV, ST3, ST4)
  - Outlier
  - Cross-polarization
  - Cross-frequency channels (RFI Index)
  - Spatial variability
  - Image Enhancement using High Pass filter
  - Kurtosis
  - Skewness
- Up to three different threshold levels
  - Statistically determined using products over mostly clean regions and removing RFI flagged data





- Data ingested from multiple EO sensors and converted to a common data format
- Flags are combined and added to the original EO file
- RFI instances are added to an internal RFI databases
- RFI Detection thresholds are adjusted based on previous detections and external information, such as:
  - IEEE GRSS RFI Database
  - Population density map
  - Airports and Air navigation aids
- GRDS on purpose does not use NWP models in order to be NWP-independent.





### Validation

- Validation conducted independently by ECWMF
  - SMOS data
  - July 2019
- ECMWF Metric for evaluation: std(First Guess Departures)
  - Observed Brightness Temperature collocated to 40x40 km grid
  - Expected value computed from numerical methods
    - Use of physical temperature, atmospheric pressure, precipitation, etc.
  - Std(FGD): std(Error computed w.r.t. expected values)





- Screening Method
  - None
  - SMOS Processor
  - GRDS Threshold 3
  - GRDS Threshold 2
  - GRDS Threshold 1



90°N Re 26 60°N 30°N 1 0° 30°S -60°S 90°S 120°E 180° 150°W 120°W 90°W 60°W 30°W 0° 30°E 60°E 90°E 150°E 180° 0 5 10 15 20 25 30 35 40

Std(FGD) SMOS V Polarization – July 2019

- Screening Method
  - None
  - SMOS Processor
  - GRDS Threshold 3
  - GRDS Threshold 2
  - GRDS Threshold 1

![](_page_8_Picture_8.jpeg)

![](_page_9_Figure_1.jpeg)

Std(FGD) SMOS V Polarization – July 2019

- Screening Method
  - None
  - SMOS Processor
  - GRDS Threshold 3
  - GRDS Threshold 2
  - GRDS Threshold 1

![](_page_9_Picture_9.jpeg)

![](_page_10_Figure_1.jpeg)

Std(FGD) SMOS V Polarization – July 2019

- Screening Method
  - None
  - SMOS Processor
  - GRDS Threshold 3
  - GRDS Threshold 2
  - GRDS Threshold 1

![](_page_10_Picture_9.jpeg)

![](_page_11_Figure_1.jpeg)

- Screening Method
  - None
  - SMOS Processor
  - GRDS Threshold 3
  - GRDS Threshold 2
  - GRDS Threshold 1

![](_page_11_Picture_8.jpeg)

![](_page_12_Picture_0.jpeg)

- Screening Over Europe
  - GRDS Threshold 3
    - More selective than SMOS

![](_page_12_Figure_4.jpeg)

![](_page_12_Picture_5.jpeg)

### Results

- RFI Probability map
  - Used to adjust thresholds
  - Monthly statistical monitoring
  - False positives near the poles caused by terrain misclassification on sea ice

![](_page_13_Figure_5.jpeg)

![](_page_13_Picture_6.jpeg)

### Results

- RFI Probability map
  - Used to adjust thresholds
  - Monthly statistical monitoring
  - False positives near the poles caused by terrain misclassification on sea ice
    - <u>Use of Artificial Neural Networks for sea</u> <u>ice detection</u>

![](_page_14_Figure_6.jpeg)

![](_page_14_Picture_7.jpeg)

#### AMSR2 – 6.9 GHz channel

6.9 GHz HH+VV ALL Threshold 3 - RFI Probability

![](_page_15_Figure_3.jpeg)

- Local RFIs observed in US, Brazil, Europe and India
- Considerably less strong than for SMOS case

![](_page_15_Picture_6.jpeg)

#### AMSR2 – 7.3 GHz channel

7.3 GHz HH+VV ALL Threshold 2 - RFI Probability

![](_page_16_Figure_3.jpeg)

- Country-wide RFI in Vietnam, Sumatra island (Indonesia), Ukraine, Oman, Turkey
- Other isolated RFI in Spain, US, Brazil, Australia

![](_page_16_Picture_6.jpeg)

#### AMSR2 – 10.7 GHz channel

10.7 GHz HH+VV IN Threshold 1 - RFI Probability

![](_page_17_Figure_3.jpeg)

Strong localised RFI in England and Italy

- **Reflected RFI** around Europe Seas, the Black Sea, the Caspian Sea and the Arabian Sea.
- False alarm detected over Southern Ocean clouds and the Gulf Stream

![](_page_17_Picture_7.jpeg)

#### AMSR2 – 18.7 GHz channel

18.7 GHz HH+VV ALL Threshold 3 - RFI Probability

![](_page_18_Figure_3.jpeg)

- Reflected RFI on USA coasts
- Other localised RFI over UK and Egypt
- False alarm detected over the Gulf Stream, East Asia and West Pacific.

![](_page_18_Picture_7.jpeg)

### Conclusions

- RFI are very diverse in nature and no single RFI detection technique is capable of properly detecting them all
- GRDS is a software that screens Earth Observation data for presence of RFI contamination.
- GRDS has been very successful in achieving its objectives :
  - Reducing RFI contamination to very low levels, with first guess departure variations compatible with regions with no RFI

![](_page_19_Picture_5.jpeg)

### THANKS FOR YOUR ATTENTION

### Questions?

# We very much welcome feedback from the audience: onrubia@zenithalblue.com

![](_page_20_Picture_3.jpeg)

### False Alarm Rate

- False alarm rate was estimated in Australia
  - Region with low presence of RFI
  - False Alarm Rate:
    - Threshold 1: 3.3 %
    - Threshold 2: 0.78 %
    - Threshold 3: 0.18 %

![](_page_21_Figure_7.jpeg)

![](_page_21_Picture_8.jpeg)

### **Population Density**

- A correlation is observed between population density and RFI presence.
- Threshold are slightly adjusted to account for increase risk of RFI

![](_page_22_Figure_3.jpeg)

![](_page_22_Figure_4.jpeg)

Wei-Chen et al., 2019.: Characteristics of L-band radio frequency interference detected via the soil moisture active passive radiometer in China and its offshore areas, Results in Physics, Volume 12, 2019, Pages 1859-1865, ISSN 2211-3797

![](_page_22_Picture_6.jpeg)