

Real-time modelling, nowcasting and forecasting ground electric field due to Space Weather events using satellite and ground-based data

Alexey Kuvshinov (1), Mikhail Kruglyakov (2), Elena Marshalko (3)

(1) ETH Zurich, Switzerland
(2) University of Otago, Dunedin, New Zealand
(3) Finnish Meteorological Institute, Helsinki, Finland

Context:

- Coronal mass ejections produce large release of plasma
- Plasma (with a speed of 400 km/s and higher; solar wind) flows into interplanetary space
- The interaction of the wind with Earth's magnetosphere/ ionosphere leads to storms/substorms

The storms/substorms generate geomagnetically induced currents (GICs) in the power grids; strong GICs can damage these technological systems

Topical task of Space Weather studies is a real-time forecasting of GICs and, ultimately, elaboration of an alerting system(s) for power companies

Modelling GICs

Based on known power line design parameters

$$GIC(t) = f[V(t)]$$
$$V(t) = \int_{L} \overline{E}(l,t) dl$$

Thus, to model GICs one needs to model (preferably in real-time) ground electric field (GEF)

To model GEF in real time (globally or regionally) one needs:

(1) Adequately parameterize the source of geomagnetic disturbances

(2) Specify the spatiotemporal evolution of the source

(3) Build electrical conductivity model of the Earth's subsurface

(4) Perform – in a given conductivity model – real-time modelling of GEF, i.e., compute as fast as feasible the spatio-temporal progression of the GEF from continuously augmented data on the spatio-temporal evolution of the source

(5) Convert the predicted GEF into GIC

Real-time 3-D modelling of GEF*

• Factorize the source via spatial modes $\overline{j}_i(\overline{r})$ and corresponding time series of the expansion coefficients $c_i(t)$

$$\overline{j}^{ext}(\overline{r},t) = \sum_{i=1}^{L} c_i(t) \overline{j}_i(\overline{r})$$
 L – number of spatial modes

Then GEF can be written as

$$\overline{E}(\overline{r},t;\sigma) = \sum_{i=1}^{L} \int_{0}^{T} c_{i}(t-\tau)\overline{E}_{i}(\overline{r},\tau;\sigma) d\tau$$

$$\sigma$$
 – Earth's conductivity, $\,\overline{E}_{_i}$ - electric field corresponding to $\,\overline{j}_i^{\,}\,$, au – "memory"

^{*} Kruglyakov M., A. Kuvshinov, E. Marshalko, 2022, Real-time 3-D modeling of the ground electric field due to space weather events. A concept and its validation, Space Weather.

Numerical implementation

$$\overline{E}(\overline{r},t_k;\sigma) = \sum_{i=1}^{L} \sum_{n=0}^{N_t} c_i(t_k - n\Delta t) W_{\overline{E}_i}(\overline{r};\sigma)$$

- t_k current time instant
- Δt sampling rate of time series
- \overline{r} positions where one needs the field
- N_t number of samples in the past ($T = N_t \Delta t$)

 $W_{\overline{E}_i}(\overline{r};\sigma)$ - weights precomputed for a given conductivity model and a given source \overline{j}_i

L – number of spatial modes

Validation: data, event and (regional) source

- Data: three components of magnetic field at IMAGE network
- Event: 7-8 September 2017 storm
- Spatial modes and corresponding time series are obtained by Principal Component Analysis (PCA) of SECS-recovered* source

$$\overline{j}^{ext}(\overline{r},t) = \sum_{i=1}^{L} c_i(t) \overline{j}_i(\overline{r})$$

Vanhamaki, H., & Juusola, L., 2020. Introduction to Spherical Elementary Current Systems. In M. W. Dunlop & H. Luhr (Eds.), Ionospheric multi-spacecraft analysis tools.

Factorization of the source

 $\overline{j}^{ext}(\overline{r},t) = \sum_{i=1}^{L} c_i(t) \overline{j}_i(\overline{r}), \quad L = 21$ (instead of original 3456 SECS-based currents)

Building 3-D conductivity model*

Korja, T., Engels, M., Zhamaletdinov, A. A., Kovtun, A. A., Palshin, N. A., Smirnov, M. Y., . . . BEAR Working Group, 2002. Crustal conductivity in Fennoscandia. Earth, Planets and Space

How fast?

$$\overline{E}(\overline{r}, t_k; \sigma) = \sum_{i=1}^{L} \sum_{n=0}^{N_t} c_i(t_k - n\Delta t) W_{\overline{E}_i}(\overline{r}; \sigma)$$

The above operation requires fraction of secs to get electric field at a grid of 512x512 sites at a current time instant provided $W_{\overline{E}_i}(\overline{r};\sigma)$ are precomputed and stored (and c_i is known in the past)

NB: computation of $W_{\overline{E}_i}(\overline{r};\sigma)$ requires numerical solution of Maxwell's equations at a set of frequencies and for *L* spatial modes; such computations take a few days but are performed only once (and in advance) and stored

Validation of the concept

$$\overline{E}(\overline{r},t_k;\sigma) = \sum_{i=1}^{L} \sum_{n=0}^{N_t} c_i(t_k - n\Delta t) W_{\overline{E}_i}(\overline{r};\sigma)$$

GEF nowcasting

(1) From Swarm and ground-based data for historical (past) event(s) one obtains spatial modes $\overline{j}_i(\overline{r})$ and coefficients $c_i(t)$ (using PCA)

$$\overline{j}^{ext}(\overline{r},t) = \sum_{i=1}^{L} c_i(t) \overline{j}_i(\overline{r})$$

(2) One calculates GEF as

$$\overline{E}(\overline{r},t_k;\sigma) = \sum_{i=1}^{L} \sum_{n=0}^{N_t} c_i(t_k - n\Delta t) W_{\overline{E}_i}(\overline{r};\sigma)$$

GEF forecasting

(1) From *Swarm* and ground-based data for historical (past) event(s) one obtains spatial modes $\overline{j}_i(\overline{r})$ and coefficients $c_i(t)$ (using PCA)

$$\overline{j}^{ext}(\overline{r},t) = \sum_{i=1}^{L} c_i(t) \overline{j}_i(\overline{r})$$

(2) One trains NN using as input - the solar wind data from ACE/DSCVR satellites (located in L1 point) and as output - $c_i(t)$

(3) One forecasts $c_i(t)$ using trained NN, and then forecasts GEF as

$$\overline{E}(\overline{r},t_k;\sigma) = \sum_{i=1}^{L} \sum_{n=0}^{N_t} c_i(t_k - n\Delta t) W_{\overline{E}_i}(\overline{r};\sigma)$$

Concluding remarks

 Nowcasted ground electric field (in a form of global/regional maps progressed in time) could be a valuable Swarm-based product

 Accurate nowcasting requires realistic and detailed 3-D conductivity model(s) of the Earth's (ongoing ESA-funded project) and realistic model(s) of the source (Macao and NanoMagsat satellite missions would help)

 Forecasting GEF (essentially forecasting the realistic source) remains very challenging task