Swarm Langmuir Probe Ion Drift, Density and Effective Mass Product: Estimating Key Ionospheric Parameters using Faceplate and Langmuir Probe Data

26 May 2022

I. P. Pakhotin, J. K. Burchill, M. Förster, R. Marchand, A. Olowookere, L. Lomidze

ESA Living Planet Symposium Bonn, Germany

SLIDEM

Credit: @esa_swarm/Twitter

Estimation of Swarm along-track Ion Drift, Density and Effective Mass

 Presently, Swarm Level 1b LP ion density product is estimated from ion admittance:

$$d_s = \frac{\partial I}{\partial V_b} = -\frac{2N_s q_s^2}{m_s v_s} \pi r_p^2$$

- 100% O+, zero along-track ion drift is assumed
- In a realistic ionosphere and at higher latitudes, these assumptions will be <u>routinely violated</u>

With multi-ion species, their admittances sum. In this case, m_s is replaced by effective mass M_eff:

$$\frac{1}{M_{eff}} = \frac{1}{N_i} \sum_{i=1}^S N_s \frac{1}{m_s}$$

- Unlike average mass, the effective mass is sensitive to a small proportion of light ions e.g. H+
- SLIDEM adds <u>TII faceplate current</u>:

$$I_{FP} = -N_i e v_i A_{FP}$$

• At low latitudes, the ion drift may be assumed zero, yielding ion density and effective mass estimates:

$$N_{i} = -\frac{I_{FP}}{A_{FP}e v_{sat}}$$
$$M_{eff} = \frac{2e\pi r_{p}^{2}I_{FP}}{d_{i}A_{FP}v_{sat}^{2}}$$

• If M_eff may be estimated, e.g. from IRI, along-track ion drift in satellite reference frame may be estimated using:

$$v_i = \sqrt{\frac{2e\pi r_p^2 I_{FP}}{d_i A_{FP} M_{eff}}}$$

Results - density

- On nightside, light ions lead to lower effective mass and thus an overestimation of density in the L1b product. SLIDEM resolves this

- This is corroborated both by comparison with IRI-2016 (above) and ISR-spacecraft conjunctions

Results – Effective Mass

- Allows Swarm to be used as a light ion detector (but without spectrometry)

- Small variations from 100% O+ have significant impact on effective mass
- Evidence of ion outflow in the hours following geomagnetic storm main phase
- Cannot be seen on IRI since plasma composition (Truhlik et al., 2015) driven by F10.7

Results – Along-Track Ion Drift

- At high latitudes, effective mass estimated from IRI-2016
- V_i now the subject of the equation, along-track drift is derived
- Detrend of auroral zone crossings is used to make values ->zero at low latitudes
- Good agreement with Weimer (2005) electric field model

PIC Simulations

- Several PTetra PIC simulations have been carried out by Richard Marchand and Akinola Olowookere to test the assumptions inherent in SLIDEM methodology

- ISR/Swarm conjunctions were selected, parameters of ion and electron temperature, densities, B-field, spacecraft potential, species % were chosen from a range of sources

- PTetra simulated FP current and admittance generally exhibited good agreement with those predicted using SLIDEM methodology – investigation of outliers is ongoing

Conclusions

- A new Swarm data product has been developed: effective mass, improved density, along-track ion drift
- Product has been validated against IRI-2016, ground ISR conjunctions, spacecraft-spacecraft conjunctions, Weimer (2005) electric field model
- Project is currently in Phase 2, SLIDEM data can be obtained from the ESA server, integration with ViRES is ongoing
- The entire mission dataset for all 3 satellites has been generated
- Paper is in review, preprint: https://assets.researchsquare.com/files/rs-1322241/v1_covered.pdf?c=1644425348

Additional Slides

Sometimes, the O+ enhancements are not seen

Additional Slides

O+ enhancement seen on dayside but not nightside?

Additional Slides

It seems the O+ comes inwards from higher latitudes?