

The Swarm constellation – Almost nine years of successful spacecraft operations: an exciting journey

ESA Living Planet Symposium, Bonn, May 2022 Presentation ID 62892 – Session B2.05 - Room: H2-17

living planet symposium BODE

G.Albini, S.Di Betta, J.Karg, D.Schmidt, L.Maleville, A.Neto

ESA / European Space Operations Centre

26/05/2022

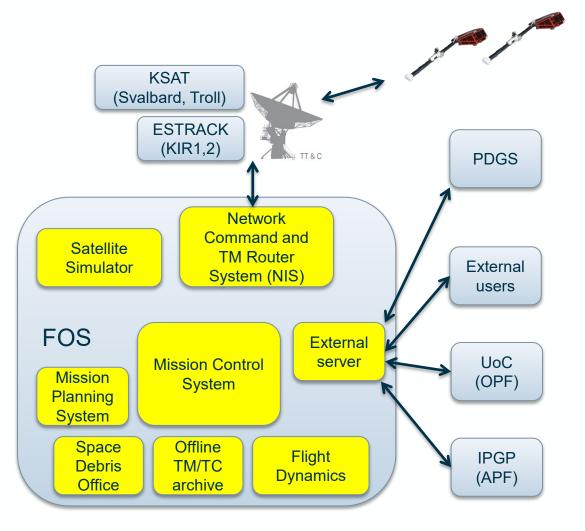
ESA UNCLASSIFIED - For ESA Official Use Only

Contents

- Swarm current space segment status
- □ Spacecraft operations concept... and evolution
- □ Instrument performance: routine is never routine and the case of the EFI
- On-board anomalies and impact on operations throughout the mission
- Collision Avoidance strategy and statistics
- Orbital evolution: counter-rotating orbits in 2021
- □ Counteracting the Solar cycle: orbit raise in 2022

The status of the Swarm space segment

The status of the platform and payload of the Swarm constellation is condensed in the following tables


Subsystem	SW-A	SW-B	SW-C
DMS CTU, RU	OK PS1 only	OK	OK
AOCS MTQ, CGPS, CESS, FGM	OK	OK	OK
TT&C	OK	OK	OK
Thermal	OK	OK	OK
Power PCDU, Battery, SA	OK All SAR OK	OK All SAR OK	OK All SAR OK
ASM	ОК	ОК	FAILED (A&B)
VFM	ОК	ОК	OK
EFI (TII and LP)	TII 4 SC/Orb/day	TII 8 SC/Orb/day	TII 1 SC/Orb/day
ACC	OK	OK OK	

■ ___ 88 ___ = → 48 ½ ___ 88 ___ 88 ___ 68 ≥ 88 ___ 68 ≥ 88 ___ 88 €8

Spacecraft operations concept... and evolution

Swarm ground segment and Flight Operations Segment: many upgrades through the years!

Two **new interfaces** introduced in 2015/2018 and 2021:

- With University of Calgary (EFI instrument) to introduce new IF (with exchange of Operations Planning File) including configuration / science orbits and scrubbing
- With IPGP (ASM instrument) to schedule ASB mode sessions and Burst Mode sessions via APF Planning File
- Both cases: instruments are operated using these input files and FOS Mission Planning System

Many FOS systems upgrades:

- Mission Control System porting, new External servers, new Mission Planning system, logging tools, etc...
- New stations validated (Troll-9), pass strategy updated

In-orbit activities to keep us busy

Almost every week the Swarm Flight Control Team has performed some **special operations** (**SOR**s) dealing with software maintenance,Star Tracker CCD images, orbit control manoeuvres...

- □ Software maintenance on many subsystems
 - Upgrade of OBC On-Board Control Procedures (OBCPs)
 - Update of STR Star Catalogue and Database (see dedicated slide)
 - Update EFI software and EFI TII configuration in RAM and EEPROM, including CCD Gain Maps
 - Update of GPSR software, disable of events, fine tuning of configuration
- □ Star Tracker CCD image to evaluate hardware aging
- Orbit Control Manoeuvres
 - Collision Avoidance (see dedicated slides)
 - Routine manoeuvres to keep lower pair satellites between 4-10s along track separation
 - Manoeuvres to support dedicated phases (see next slide)
- □ Instrument calibrations, configuration update, including ASM Burst Mode sessions
- Additional passes for station validation

540

SORs

More than **80**

Manoeuvres

🗮 🚍 📲 🚍 💳 🛶 🛛 🖉 🔚 📰 🚍 📲 🗮 🚍 🛶 🞯 🛌 📲 🚼 🚍 ன 🔤 🛶 👘 🛨

Instrument performance: routine is never routine

Since commissioning, many anomalies on the instruments were tackled and mostly solved in many way to reach a rather stable configuration and good performance, just to mention EFI change of operations concept...

	ASM					
•	Manoeuvres to					
	calibrate VFM-ASM					
•	Update of motor					
	parameters					
_	New interfece with					

 New interface with IPGP <> FOS to schedule Burst and Vector Mode sessions

VFM

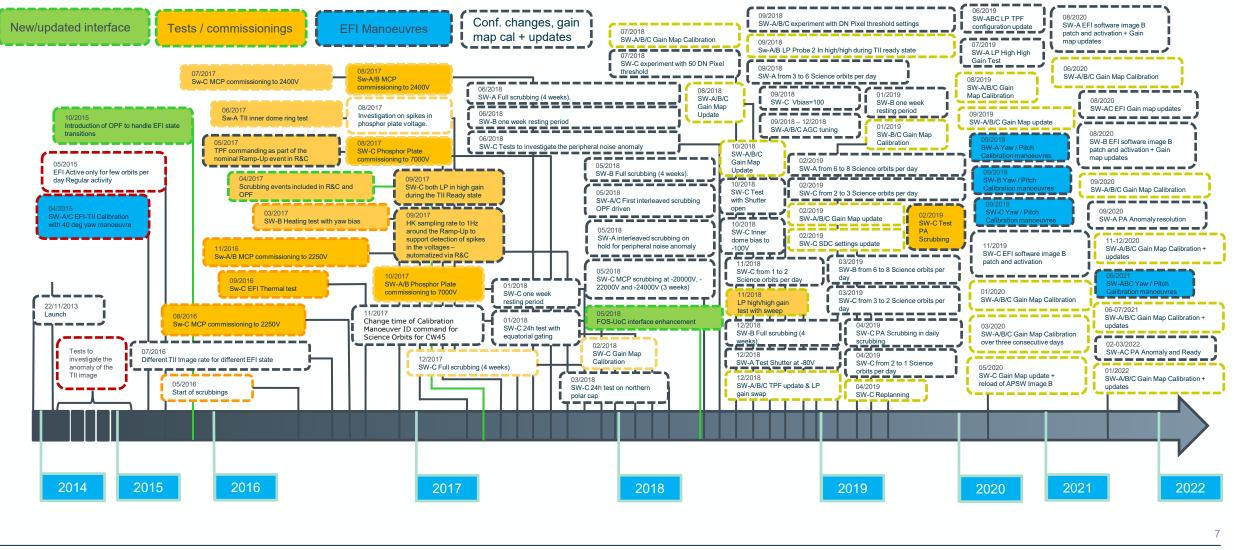
 Recurrent SEUs affecting science data, HK data: few power cycle ops necessary to date

•

Other anomalies detected by VFM FDIR triggering instrument off solved

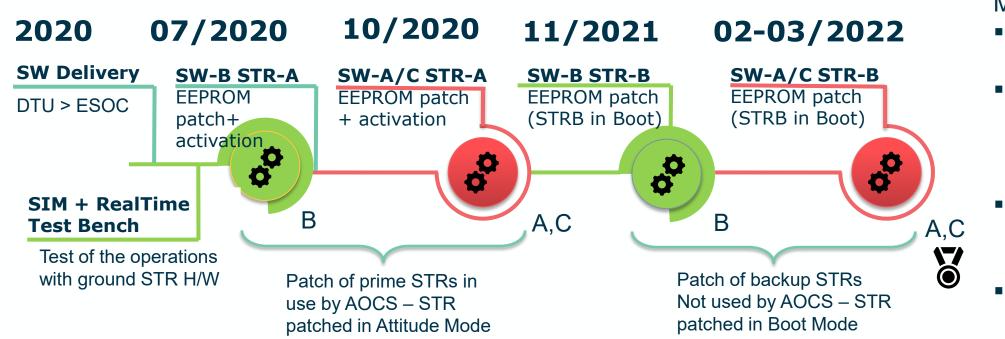
ACC

- EDAC-Code Area anomaly leading to OBC SysLog fill-up : new OBCP developed and uplinked
- Calibration man in early mission years with Cold Gas firing


EFI

- Image anomaly led to: change of operating concept "few science orbits per day" + scrub
- Many manual ops
- New interface (OPF) also updated to include tests and scrub
- Application software updated (Image B)
- Configuration tuned
- Peripheral anomaly-led high-voltages shutdown
- Temperatures trend check

Instrument activities: the case of the EFI



Condensed and clearly "unreadable" view of the principal activities on the EFI instrument to date

Software evolution: the new GAIA Star Catalogue

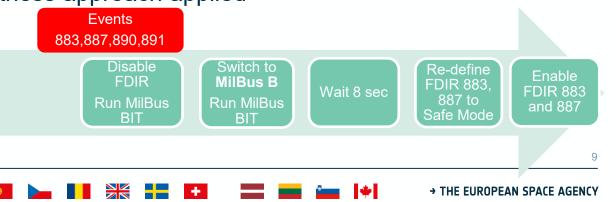
- esa
- The Swarm uASC STR (DTU Denmark) was loaded with Hypparcos Star Catalogue and Star Database.
- In view of the mission lifetime, decided to upload a new Star Catalog and Database based on ESA's GAIA star measurements => better Star reference, more correct EPOCH, expected improved attitude determination

Massive activity:

- 8000 commands per STR/satellite
- 20 G/S passes to uplink commands to the on-board schedule per STR
- Switch from A>B STR operation is not trivial
- Backup STRs: 5 test orbits to test attitude

Results: Residual (or confidence level), the misfit between observed and catalogued stars, expressed in arcseconds decreased with new Star Catalogue update. This shows a Star matching accuracy increase between 10% and 25% across all Swarms

On-board anomalies: Swarm-C MILBUS anomaly

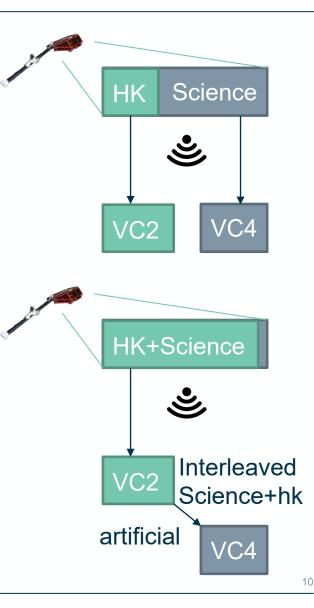


A major anomaly on the On-Board Computer of Swarm-C affecting MILBUS communication happened in April, 2019:
The MILBUS is in charge of supporting the communication from/to OBC to other instruments / equipment (TM/TC)
An issue with the MILBUS on OBC-A led to safe mode (single reboot) and then to OBC switchover to B side (with all equipment on backup side!)

- Safe mode recovery performed + equipment on nominal side
- Tested MILBUS-A on OBC-B: MILBUS-A is still usable!
- In July, evaluation of a complex test in-orbit with switch-back to OBC-A side using MILBUS-B and partial evaluation of MILBUS-A: successful !
- Mitigation strategy adopted by upgrading OBCP to toggle MILBUS, to attempt a MILBUS switch rather than full OBC switchover in case re-occurrence
- Restoration of OBC-A MILBUS-A with this robustness approach applied

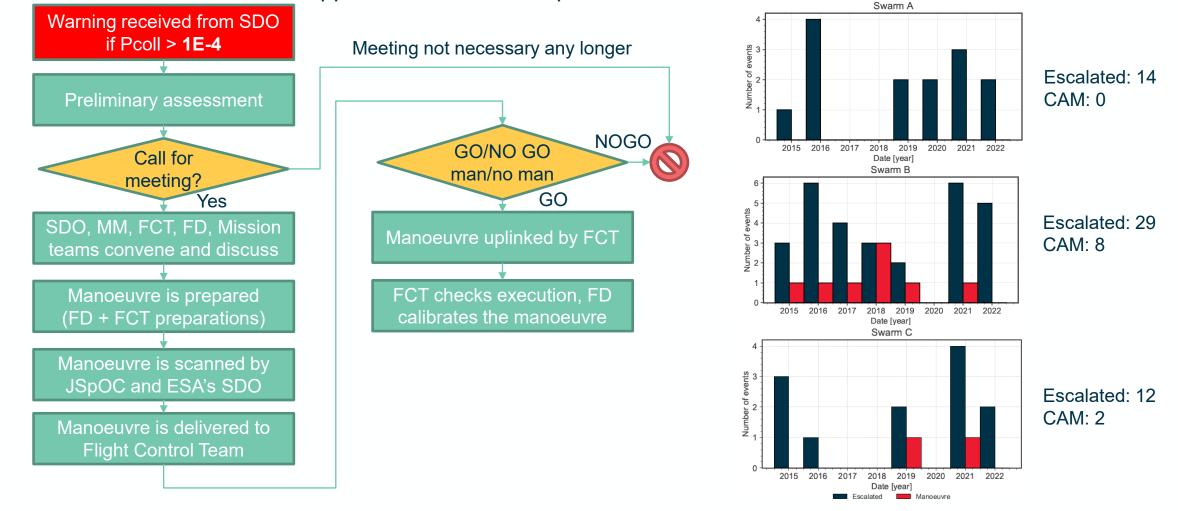
□ New approach applied in RAM on-board:

- Attempt switch to MILBUS-B keeping OBC-A
- Re-def original action in case not cured



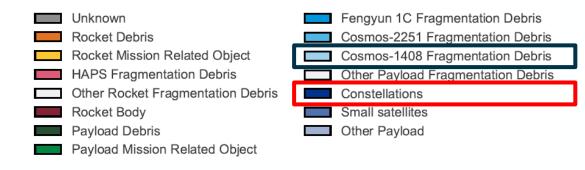
On-board anomalies: Swarm-A downlink anomaly

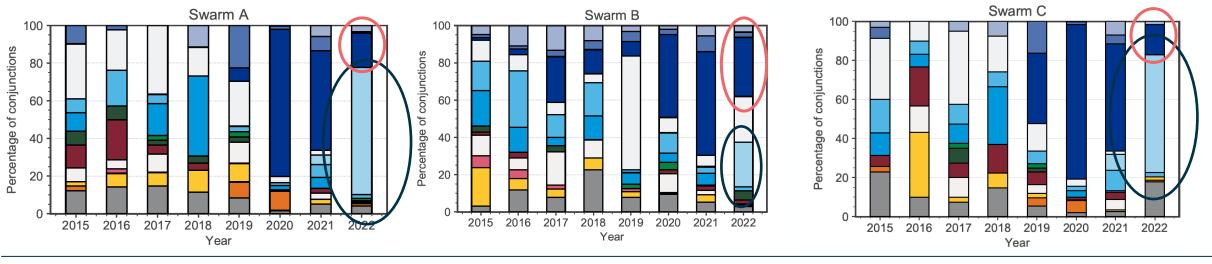
A major anomaly on the On-Board Computer of Swarm-A affecting the downlink of science TM happened in 2020: after a certain number of good TM frames from the Mass Memory Unit "Science" storage, the frames were corrupted


- □ Attempts to re-dump the data ruled out G/S issue and MMU storage issue
- □ Issue in downlinking (but only science data): H/W TME<>MMU
- Many tests performed, including reboot of TM Module and encoder that led to safe mode => issue not solved by reboot, but also not permanent
- Necessity to resume science downlink:
 - Approach "think outside the box" applied
 - Routing all TM into single MMU storage, MMU re-partitioned
 - Big effort on ground to re-adapt V-Channellisation concept
 - Specific ground and on-board configuration on Swarm-A adopted since
 - Great team effort, good approach to avoid going to full OBC-B side and loose the redundancy on the OBC hardware (very important!)

Collision Avoidance strategy and statistics

Since launch, a series of Collision Avoidance Manoeuvres has been undertaken to ensure a proper risk mitigation after the notification of a close approach from ESA's Space Debris Office (SDO).


→ THE EUROPEAN SPACE AGENCY

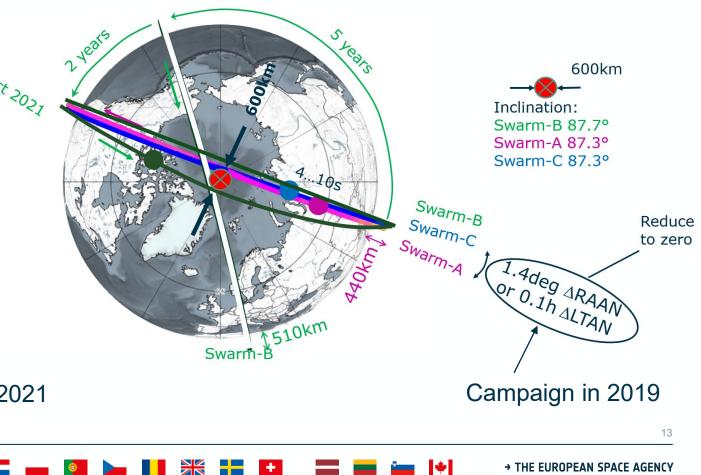

11

Collision Avoidance strategy and statistics

- The launch of satellite constellations and mega-constellations in Low Earth Orbits is already visible in the fraction of Close Notifications caused by constellations:
 - COSMOS-1408 Anti Satellite Test event in November, 2021
 - Analysis: Space Debris Office for all
 - events with Pcoll > 1E-6
 - Data: ESA's Space Debris Office

12

Orbital evolution: counter-rotating orbits in 2021


esa

Due to the different altitudes, the Swarm spacecraft orbital planes (inclination 87.3deg) are rotating at different speed (consequence of non-Synchronism): therefore every ~7.5 years the planes of Swarm-A/C and Swarm-B end-up quasi co-planar (co-rotating satellites or counter-rotating satellites) opening exciting science opportunities:

- Counter-rotating scenario in 2021
- Closest alignment on 3 October, 2021

Take benefit of this natural orbital configuration:

- In 2019, a small manoeuvre campaign was undertaken to let the Swarm-A/C relative RAAN evolve to zero by October, 2021
- The along-track separation of the lower pair has been studied to provide different separation phases: 4 seconds, 2 seconds and variable separation phase: campaign start 15/07/2021 and end on 15/12/2021

Orbital evolution: counter-rotating orbits in 2021

Along-track separation achieved with series of Orbit Control Manoeuvres

2s separation (kept as close as possible)

<u>Acquisition</u>: 09/09/2021 – 23/09/2021

<u>Acquisition:</u> 01/06/2021 – 15/06/2021 <u>Phase:</u> 15/06/2021 – 09/09/2021 <u>15/06/2021 – 09/09/2021</u>

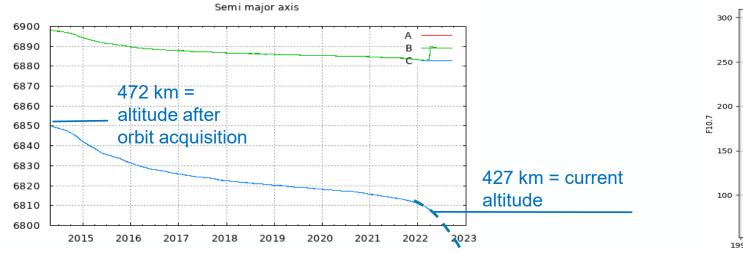
4s separation

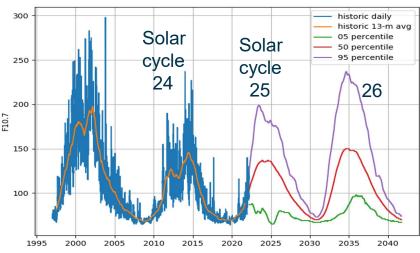
(kept 3.5s to 4.5s)

 Variable separation (maintenance +/- 1s)

<u>Start drift 05/10/2021</u> <u>Maint</u>: 14/10/2021 <u>Maint</u>: 04/11/2021 <u>Maint</u>: 25/11/2021

Return to operational configuration 16/12/2021 - 13/01/2022


See relevant poster at LPS22 Albini, Sieg, Petrucciani


→ THE EUROPEAN SPACE AGENCY

14

Counteracting the Solar cycle: orbit raise in 2022

The latest journey taken with the Swarm trio is the series of manoeuvres to raise the orbits to survive re-entry that would happen in 2025 due to the effect of the increased drag in Solar cycle #25 (images ESOC FD group)

Target: keeping the Swarm lower pair flying up to next Solar minimum (2030+)

To achieve a long mission without re-entry in 2025 the orbit will have to be raised depending on the strength of the solar cycle => analysis performed by ESOC Flight Dynamics

- Step-wise approach
- Rather big first phase: 45km raise (25.5 m/s) : usual orbit manoeuvres with Swarm are cm/s !
- Next phases will be planned for the next years depending on the Solar cycle evolution

Counteracting the Solar cycle: orbit raise in 2022

→ THE EUROPEAN SPACE AGENCY

Plan:

- Start early May to get benefit from ramp-up Solar cycle
- Duration 10 weeks nominal
- OCM Thrust phase multiple of 1 revolution to minimise eccentricity effects
- Each manoeuvre is in-flight direction: satellite will have to slew by 180deg in Yaw before firing thrusters

Operational aspects

- Up to four manoeuvres per week
- Along track separation increase (safety aspects)
- Crossover risk will be avoided in case of anomalies
- Several additional passes for manoeuvre uplink, acquisition, orbit determination, etc.
- EFI instrument will be in Ready State during OCMs

Week	Burn	Week Scheme	Dv (tot)	D Along-Track (tot)
2-6 May	1 rev	[<mark>A1 – C1</mark>]	1.2 m/s	42 s
9-13 May	2 rev	[A2 – C2]	3.6 m/s	126 s
16-20 May	2 rev	[A3 – C3 – A4 – C4]	8.4 m/s	294 s
23-25 May	2 rev	[<mark>A5 – C5</mark>]	10.8 m/s	378 s
30 May– 3 Jun	2 rev	[<mark>A6</mark> – C6 – A7 – C7]	15.6 m/s	546 s
7-10 Jun	2 rev	[C8 – A8]	18.0 m/s	462 s
13-15 Jun	2 rev	[C9 – <mark>A9</mark>]	20.4 m/s	378 s
20-24 Jun	2-2-2- 1 rev	[C10 – A10 – C11 – A11]	25.2 m/s (C) 24.0 m/s (A)	210 s (drift: 42s/day)
27 Jun– 1 Jul	0.9 m/s + 0.18 m/s	[A12 A13]	25.08 m/s (A)	42s (after first [A]) -> 21s (after second [A])
4–8 Jul	0.12 m/s	[A 41]	25.2 m/s	Routine separation 4-10s
				16

□ 9 years of successful operations driven by close collaboration between all mission teams

□ Many ground and spacecraft anomalies solved and mitigated

- Swarm spacecraft are aging nicely and ready to continue their mission (as per Swarm In-Orbit Performance Review meeting #16 in 2022)
- Exciting scenarios have been used for science

See relevant poster at LPS22 Albini, Sieg, Petrucciani

- Swarm-A/C (lower pair) orbit raise campaign ongoing
- □ Evolution of Flight Operations Segment will continue to cope with hardware and software evolution

💳 🔜 📲 🚍 💳 🛶 📲 🔚 🔚 🔚 🔜 📲 💳 🛶 🚳 🛌 📲 🚼 🖬 ன 🍁 🕨 → THE EUROPEAN SPACE AGENC