

NanoMagSat: a 3x16U satellite constellation for fast recovery of the Earth magnetic field and the ionospheric environment, a project update

F. Deconinck¹, Dr. G. Hulot², Dr. Jean-Michel Léger³, P. Nieto⁴

- Open Cosmos Ltd, DISC, Zephyr Building, Eighth St, Didcot, OX11 ORL, United Kingdom
- (2) Université Paris Cité, Institut de Physique du Globe de Paris, CNRS, Paris France (3) Université Grenoble Alpes, CEA, Leti F-38000 Grenoble, France
- COMET Ingenieria S.L. Carrer del Convent dels Carmelites, 2, 46010 València, Spain

LPS 2022 - B7.03.2 New Space missions with small and nanosatellites - 26/05/2022

NanoMagSat overview

Monitoring the Earth's magnetic field and ionospheric environment

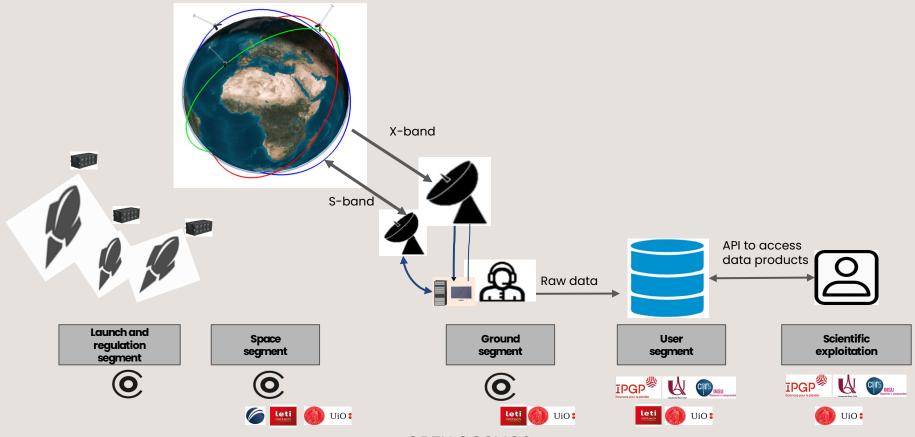
A 3x16U Cubesat constellation at 575 km initial altitude

- 1 satellite at 60° inclination
- 1 satellite at 60° inclination offset by 90°-RAAN
- 1 satellite in near-polar orbit (optimised with Swarm-B)

State of the art compact payloads

- A Miniaturised Absolute Magnetometer (MAM)
 with a set of two Star Cameras (STR)
- A High Frequency Magnetometer (HFM)
- 2 dual-frequency GNSS
- A multi-Needle Langmuir Probe (m-NLP)

Initiating a **low-cost scalable collaborative constellation solution for very long-term observations** (extending to space the Intermagnet network of magnetic observatories)

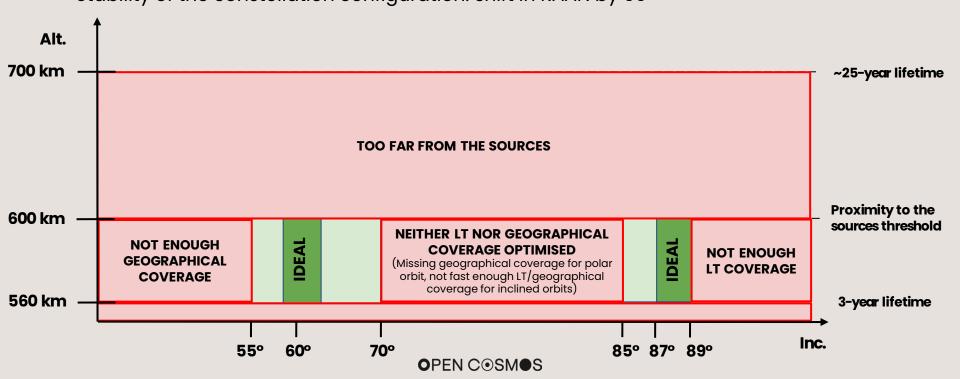

NanoMagSat presentations at LPS

	Science Payloads Mission and platform
Wednesday 8:45am B7.01.1 Scout: ESA NewSpace Science missions	NanoMagSat, an optimal New Space low-Earth orbiting nanosatellite constellation to investigate Earth's magnetic field and ionospheric environment Dr. Gauthier Hulot Université de Paris, Institut de physique du globe de Paris, CNRS France
Thursday 1:30pm A6.02.1 Upper/Lower Atmosphere Processes, Coupling and Ion- Neutral Interactions	Whictler in LLL detected from LLO lightning detection and ignocehoric monitoring lightness catallites and the
Thursday 2:45pm B7.03.1 New Space missions with small and nanosatellites - 1	The NanoMagSat Magnetometry Payload Dr. Jean-Michel Léger CEA-LETI France
Thursday 3:55pm B7.03.2 New Space missions with small and nanosatellites - 2	NanoMagSat: a 3x16U satellite constellation for fast recovery of the Earth magnetic field and the ionospheric environment, an update Florian Deconinck Open cosmos Ltd. United Kingdom
Thursday 5:20pm Poster Session Day 4	Coupling of electromagnetic waves between the magnetosphere and the topside ionosphere: new proposed science targets for the NanoMagSat mission Prof. Ondrej Santolik Department of Space Physics, Institute of Atmospheric Physics of the Czech Academy of Sciences, Prague, Czechia; Faculty of Mathematics and Physics, Charles University, Prague, Czechia Czech Republic
	The multi-needle Langmuir probe on board NanoMagSat Dr. Lasse B.N. Clausen University of Oslo Norway Show details

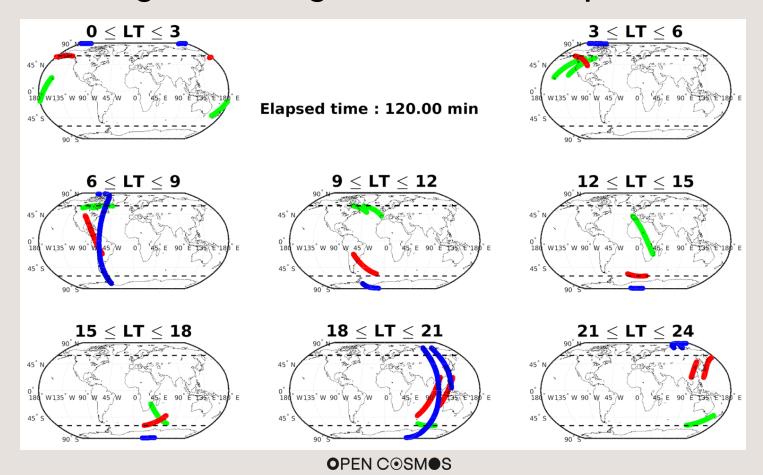
OPEN COSMOS

NanoMagSat mission architecture

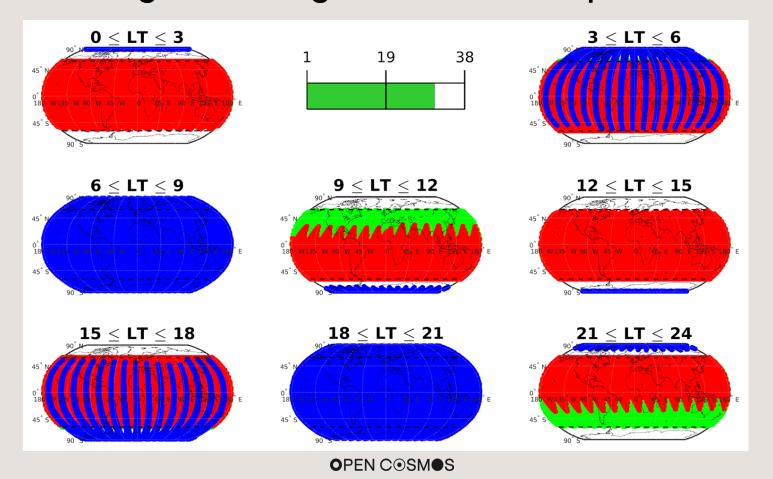
NanoMagSat mission characteristics



 t	Orbits	1x 87° inclination, circular orbit at 575 km altitude 2x 60° inclination, circular orbit at 575 km altitude offset in RAAN by 90°
ymer	Launch	3 dedicated launches
segr	Design Lifetime	4 years: 1 year constellation build up, 3 years nominal operations


NanoMagSat driving observation requirements

- Spatio-temporal grid requirement: [±6° long.; ±6° lat.; ±1.5h LT] covered as often as possible
- 3-year minimum duration plus the combination of Local Time and geographical coverage
- Stability of the constellation configuration: shift in RAAN by 90°

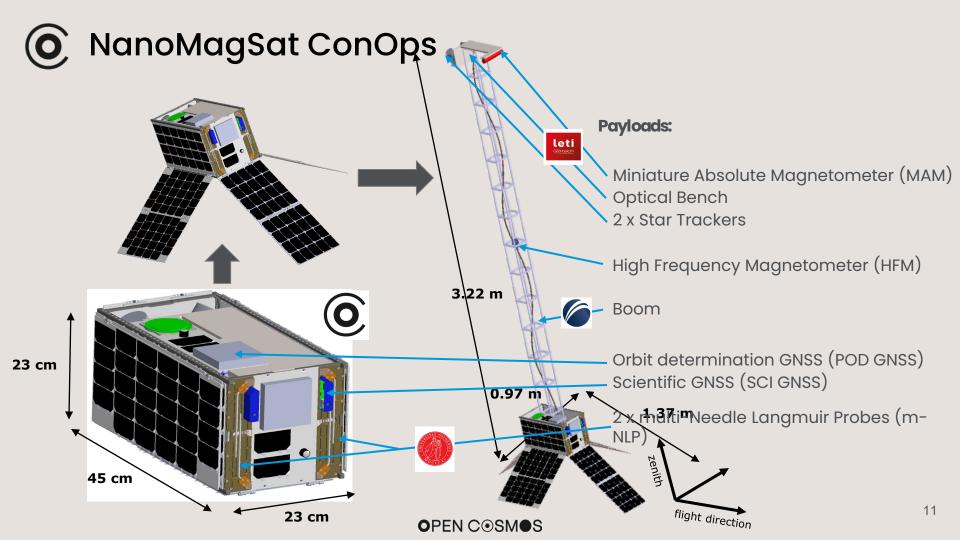


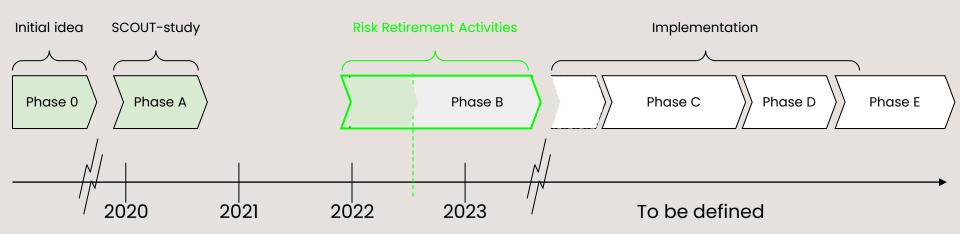
NanoMagSat driving observation requirements

NanoMagSat driving observation requirements

NanoMagSat mission characteristics

nt nt	Orbits	1x 87° inclination, circular orbit at 575 km altitude 2x 60° inclination, circular orbit at 575 km altitude offset in RAAN by 90°	
Launch	Launch	3 dedicated launches	
Seç	Design Lifetime	4 years: 1 year constellation build up, 3 years nominal operations	
	Magnetic cleanliness	Optimised for the instruments: no reaction wheels , no propulsion , 3m boom , wiring design , accommodation optimisation	
.,	Volume per spacecraft	16U Cubesat, 19 litres of internal volume	
lce nent	Power per spacecraft	Double deployables for >42W (depending on inclination/RAAN/date)	
Space	AOCS	Gravity gradient stabilised, air-torquers, GNSS, sun sensors, magnetometers	
o	Link per spacecraft	S-Band uplink: 256 kbit/s S-Band downlink: 1 Mbit/s X-Band downlink: 100 Mbit/s	


NanoMagSat mission characteristics



		Orbits	1x 87° inclination, circular orbit at 575 km altitude 2x 60° inclination, circular orbit at 575 km altitude offset in RAAN by 90°
	Launch segment	Launch	3 dedicated launches
	Seg	Design Lifetime	4 years: 1 year constellation build up, 3 years nominal operations
		Magnetic cleanliness	Optimised for the instruments: no reaction wheels , no propulsion , 3m boom , wiring design , accommodation optimisation
		Volume per spacecraft	16U Cubesat, 19 litres of internal volume
	Space segment	Power per spacecraft	Double deployables for >42W (depending on inclination/RAAN/date)
	Space	AOCS	Gravity gradient stabilised, air-torquers, GNSS, sun sensors, magnetometers,
	S	Link per spacecraft	S-Band uplink: 256 kbit/s S-Band downlink: 1 Mbit/s X-Band downlink: 100 Mbit/s
	round	Ground stations	3 polar ground stations and 4 mid-latitude ground stations 2 passes/day for TT&C, 4 passes/day for data downlink
		Data per spacecraft	Payload and science-relevant auxiliary data: 5 GByte / day Platform telemetry: day 17 MByte /

NanoMagSat mission concept status

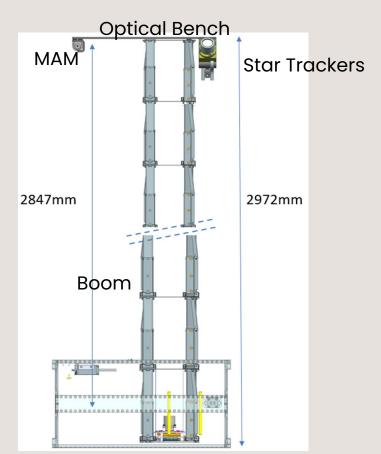
Scope of Risk Retirement activities:

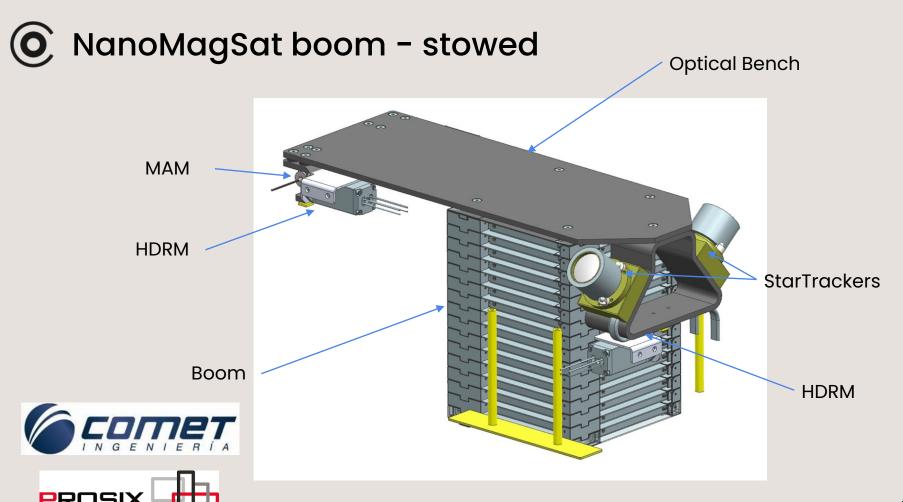
- Development of the magnetometers electronics
- Structural model of the deployable boom
- Satellite platform optimised for magnetic cleanliness

The NanoMagSat Magnetometry Payload Dr. Jean-Michel Léger | CEA-LETI | France

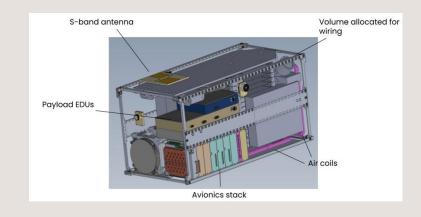
NanoMagSat boom - deployed

Boom

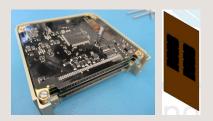

- High Stiffness & dynamic behaviour optimisation
- High Thermoelastic stability
- Extensive use of amagnetic materials
- Self deploying without electric actuation
- Extra motorisation to deploy harnesses
- Inner accommodation of harness and HFM


Optical Bench

- High thermoelastic stability
- High accuracy for Star Trackers accomodation and orientation
- Extensive use of amagnetic materials

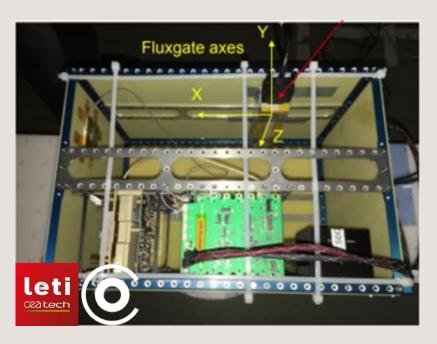


NanoMagSat platform

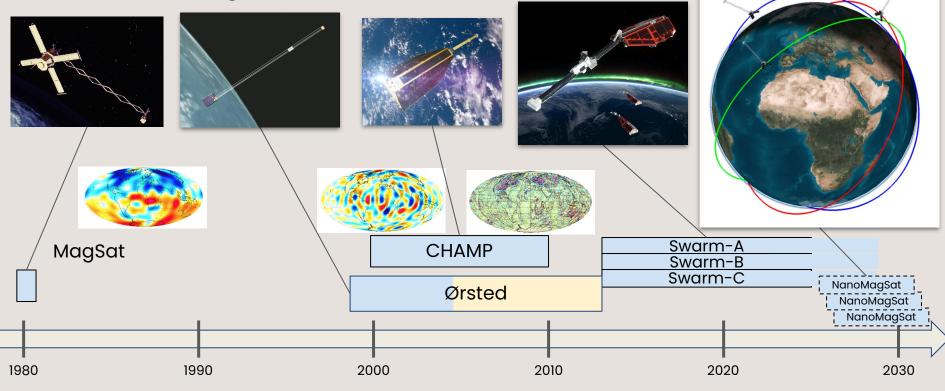

Satellite-level analysis

- Mass budget: being refined with latest 16U deployer limitations
- Accommodation to be iterated to minimise the magnetic signature
- Thermal analysis ongoing

Magnetic budget specific contributors


- AOCS -> use of air coils
- EPS representative models for test
 - Batteries
 - EPS distribution board
 - Solar panel
- Wiring concept

NanoMagSat platform and magnetic cleanliness


- Threshold of 135 mA.m2 at 3m
- Initial tests done in 2020 at CEA-Leti premises

Sub- system	Measured during the consolidation study	Proposed moment allocation (nt or mA.m²)
STR + OB	Partially (1 STR)	1 nt before compensation (included in the anisotropy characterization)
Boom	N	0,2 nT before compensation
HFM	Υ	0,5 nt before compensation
EPS	N	50 mAm² for batteries & power distribution (bonding, shielding, grounding) still subject to significant changes
COMMS TT&C	N	5 mA.m² TBC
COMMS HDR	N	5 mA.m² TBC
ADCS	Partial tests only	20 mA.m²
Structure + OBDH	Y (12U) # 7 mA.m²	10 mA.m²
Fixed Panels	Y	2 mA.m²
Solar Panels	Ň	50 mAm² (preliminary estimate by OC) Lessons learnt from Swarm : if properly designed (back wiring), could be reduced to a point where stray fields compensation is no longer required
Harness	N	Grounding concept & thermoelectric effects to be taken into account
MAM & HFM DPUs	N	15 mA.m²
STR DPU	Υ	1 mA.m²
M-NLP (material replacement & electron emitter integration)		5 mA.m² (including electron emitter stray field to be evaluated during the RRA)
GPS Partial tests only (no antenna) < 0,1 mA.m²		1 mA.m²

Magnetic cleanliness budget

NanoMagSat: ensuring continuous monitoring of the Earth magnetic field

Florian Deconinck flo@open-cosmos.com

Twitter @Open_Cosmos
Facebook /open.cosmos.space
LinkedIn Open Cosmos Ltd

