Global L-band Observatory for Water Cycle Studies (GLOWS) mission Low-cost soil moisture continuity mission

Rajat Bindlish¹, David Long², Jeff Piepmeier¹, Giovanni De Amici¹, Mark Bailey³

¹NASA Goddard Space Flight Center ²Brigham Young University ³MMA Design Inc

NASA

Soil Moisture

Objective of a Soil Moisture mission is to provide high-resolution and frequent-revisit global maps of soil moisture.

- Provide understanding of the hydrologic cycle
- Understand processes that link the terrestrial water, energy and carbon cycles
- Estimate global water and energy fluxes at the land surface
- Enhance weather, flood and drought prediction

Improve agricultural forecasts and human health

A number of these science and applications need longer term

Global L-band Observatory for Water Cycle Studies (GLOWS)

Soil Moisture	Ocean Surface Salinity	Ocean Surface Winds	Vegetation Biomass
 High-resolution and frequent-revisit Understand processes that link the terrestrial water, energy and carbon cycles Estimate global water and energy fluxes at the land surface Enhance weather, flood and drought prediction 	 Ocean circulation governed by salinity + temperature Global water cycle: Salinity reflects balance between precipitation and evaporation Freshening due to ice melt in Arctic Balance between Atlantic and Pacific Changes in coastal salinity due to increased run off 	 Effective in intense tropical cyclones L-band not affected by rain or clouds L-band does not saturate with wind speed 	 vegetation biomass Microwaves observations saturate at higher biomass Food security and agriculture Quantify net carbon flux in boreal landscapes Thin Sea Ice Sea ice thickness up to 0.5 m Complementary observations to altimeter - thin sea ice Summer melt of sea ice and ice sheets can cause fresh water lenses
Soil Moisture and SSS	 Changes in coastal salinity due to increased run off S from SMAP 	cean Winds using L-band	 altimeter - thin sea ice Summer melt of sea ice and ice she can cause fresh water lenses Sea Ice LOVE

NASA

SMOS

- Launched Nov 2009
- 2D-synthetic aperture
 - Multiple incidence angles at every location [0°-65°]
- Sun Synchronous orbit with an ascending orbit of 6:00 AM
- Spatial resolution 40 km
- Swath 1400 km
- 3 day global coverage

SMAP

- Launched Jan 2015
- Conically Scanning Real aperture
 - Constant incidence angle of 40°
- Sun Synchronous orbit with a descending orbit of 6:00 AM
- Spatial resolution 40 km
- Swath 1050 km
- 3 day global coverage
- 8 day exact repeat

- SMOS, Aquarius and SMAP missions have shown the advantages of L-band observations to provide improved soil
 moisture (greater accuracy and estimates over greater vegetation levels) and SSS retrievals from space
 - Use of low frequency for secondary applications has also been demonstrated (Sea Ice, Ocean Surface Winds)
- Active and Passive L-band observations provide an opportunity for integrated land surface observations using a remote sensing platform
- Low frequency L-band missions can address a wide range of science objectives from different disciplines (soil moisture, ocean salinity, freeze-thaw, sea ice, ocean winds)
- Unfortunately, there are no current plans for a future U.S. L-band mission because low frequency missions have been traditionally too expensive due to the need for a large antenna
- Need for soil moisture observations to provide data continuity for operational applications
 - Weather forecasting (NWP)
 - Agriculture
 - Disaster (floods, droughts)
 - Land surface hydrology

GLOWS objectives

- Create SMAP-like capability
 - Science (resolution/swath/etc.)
 - Radar and radiometer
 - CONOPS
 - Design Life
- Stow within a rideshare volume
 - Use deployable high gain meta-material Lens
 - Use multi-element patch array feed
 - Reduce mass and volume
 - Leverage SOA commercial radar technologies
- Enable an Earth Venture Class mission

Science Traceability to Instrument Specification Matrix

Science Objectives	Scientific Measurement Requirements	Instrument Functional Requirements	Mission Functional Requirements
Understand	Soil Moisture:	L-Band Radiometer:	DAAC data archiving
processes that link the terrestrial water, energy and carbon cycles;	~4% volumetric accuracy in top 5 cm for vegetation	Polarization: V, H, U; Resolution: 40 km; Relative accuracy*: 1.5 K	and distribution.
	water content < 5 kg m ⁻² ;	<u>L-Band Radar:</u>	Field validation
	Hydrometeorology at 10 km; Hydroclimatology at 40 km	Polarization: VV, HH, HV; Resolution: 10 km: Relative accuracy*: 0.5 dB for VV	program.
Estimate global water and energy fluxes at the land surface;	riyaroomnatology at 40 km	and HH	Integration of data
		Constant incidence angle** between 35° and 50°	products into multisource land data assimilation.
Quantify net carbon flux in boreal landscapes;	Freeze/Thaw State:	L-Band Radar:	
	Capture freeze/thaw state	Polarization: HH; Resolution: 3 km;	
	vegetation-soil continuum	channel if 2 channels are used);	
Enhance weather and climate forecast	with two-day precision, at the spatial scale of landscape variability (3 km).	Constant incidence angle** between 35° and 50°	
skill;	Sample diurnal cycle at	Swath Width: 1000 km	Orbit: 670 km, circular,
Develop improved flood prediction and drought monitoring capability.	consistent time of day	Minimize Faraday rotation (degradation	polar, sun-synchronous,
	Global, 3-4 day revisit;	factor at L-band)	~6am/pm equator
	Boreal, 2 day revisit		
	minimum of three annual cycles	winimum three-year mission life	mission***

* Includes precision and calibration stability, and antenna effects

- ** Defined without regard to local topographic variation
- *** Includes allowance for up to 30 days post-launch observatory check-out

Global L-band Observatory for Water Cycle Studies (GLOWS)

Functional Block Diagram

GLOWS Electronics

- Thermal:
 - Components located on "side panels" for efficient radiation to space
 - Components grouped on panels according to thermal zoning
 - RFE requires specific thermal stability
- CG balancing:
 - Heaviest components (Radar PCU/15kg and Radar Processor/10kg) located near the center
- I&T: Dedicated radiometer panel allows easier I&T
- Proximity Considerations
- Efficient Cable Feed sequence

Global L-band Observatory for Water Cycle Studies (GLOWS) Payload Overview Deployable GLOWS Lens Antenna (L-band) Spacecraft Solar Arrays Antenna **Electronics Boxes** 1.17 m ESPA Grande 5m 1.07 m Envelope ESPA Grande Spacecraft (42 x 46 x 56 inch) 1.42 m Bus (or Satlet Spacecraft) ESPA Ring

GLOWS Meta-Lens Antenna

Global L-band Observatory for Water Cycle Studies (GLOWS)

NASA GLOWS

Antenna for Global L-band Active/Passive Observatory for Water Cycle Studies

accomplish MORE

GLOWS - Comparing GLOWS and SMAP

GLOWS - Comparing GLOWS and SMAP

Similarities

- Active (Radar) and passive (Radiometer) share a common aperture
- Same orbit (685 km 6am/6pm)
- 6-meter aperture
- Same L-band frequencies for both radar and radiometer
- 14.6 rpm rotation motor that creates a rotational swath pattern on the earth
- Same on-orbit calibration plans/maneuvers
- Same 3-year mission objective

Differences

- Flat multi-layer membrane Meta-lens(TR) vs. Canted mesh reflector
- Nadir deployed aperture with 5 symmetrical supports vs. Zenith deployed hoop on single deployed boom support
- Instrument aperture obscuration of data downlink window vs. Solar illumination and GPS
- Electrical Disconnect after deployment vs slip rings/rotary joints
- Lens temperature sensors vs. no sensors
- Multi-element Patch Feed vs. Feed Horn

GLOWS - Comparing GLOWS and SMAP

MASS	SMAP	GLOWS	Reduction
Instrument	356 kg	199 kg	45%
Spacecraft	686 kg	183 kg	73%
Propellant	80 kg	21 kg	74%
Total	1122 kg	403 kg	-60%
VOLUME	SMAP	GLOWS	Reduction
Launch Volume	15.5 m ³	1.54 m ³	-90%

Summary

- SMOS and SMAP have demonstrated the value of L-band radiometer observations -Large set of science and applications addressed
- L-band radiometer missions have been challenging due to the aperture size required to make high resolution observations cost perception
- GLOWS project demonstrated the ability to make L-band observations (consistent with SMAP resolution) using a smallsat – soil moisture continuity
- Reduced mass and volume compared to SMAP lower cost
- Ability to do big science with smallsat cost effective
- Further work needed to increase the TRL and mature the GLOWS mission concept

