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Motivation:   microwave sensor differences

● Large offsets
● Some differences change with time
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Motivation:
● long term Climate Data Records (CDR’s) need to combine observations from several sensors
● but there are unexpected sensor to sensor differences even after careful calibration

Methods:
● bias and trend correction is applied after calibration on >Level-1b data
● homogenisation does not take differences in Spectral Response Function (SRF) into account
● harmonisation (inter-satellite re-calibration)

– based on measurement equations

– given SRF differences are taken into account

– uses fundamental measurements, i.e. counts in level-1a data

– considers all uncertainties, metrological based approach

– uses simultaneous overpasses or match-ups

Inter-satellite re-calibration
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Match-ups

Here we assume
● largely overlapping area
● small time difference
● small viewing angle differences
● differences in Spectral Response Functions (SRF)

Due to the spatial and temporal variability of the 
radiances these intervalls add a match-up uncertainty

Sensors on satellites looking 
● at the same area on earth
● at the same time
● from the same distance
● with the same viewing angle
● with the same photon sensitivity

shall measure the same radiance
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Solution:
● From simultaneous overpasses of satellites match-up data sets are derived.
● Additional ‘warm’ match-ups of targets varying slowly based on geostationary satellites are used.
● Uncertainty of each fundamental datum is assessed.
● Expected differences in radiance due to different SRF are calculated.

Uncertainty of expected differences is assessed.
● Uncertainty in radiance difference due to match-up is assessed. Zero mean difference is assumed.
● A Bayesian based cost function (J) is defined to quantify the sensor to sensor misfit.
● The cost function is minimized by changing parameters of the sensors measurement equation.
● Parameters (x) can be polynomial coefficients and/or calibration coefficients determined pre-launch or in-orbit.
● Certain other parameters (sensor state variables q) of the measurement equation have uncertainties to be considered
● All derivative code generated by Automatic Differentiation (AD)

● Marginalised Error In Variables (MEIV) method: 
– does not optimize sensor state variables (q)
– substabtially reduced memory and computing time resources
– takes all uncertainties into account (including correlation)

Harmonisation
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Harmonisation Framework

Rjsensor model Sj

Ri

costi,j Ji,j

sensor model Si

xi

J= ∑
i , j ,i< j

J i , j

Ci = (
∂S i

∂q i
) W Cq W t (

∂ S i

∂ qi
)
tRi = S i( x i , q i )

qi

xj

qj

i,j : sensor indices

R : radiance

K : expected difference in radiance

J : cost function

X : calibration parameters of sensor model

q : sensor state variables

C : error covariance matrix

Ckij : uncertainty of match and expected
  difference in radiance

Ci : uncertainty of sensor radiance

W : averaging matrix

Cq : uncertainty of sensor state variables

J i , j =
1
2 (R i−R j−K ij)

t (C i+C j+C kij)
−1 (Ri−R j−K ij)

Kij
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Harmonisation Framework MEIV

(
∂ Si

∂q i
)
t

x matrix free by reverse/adjoint mode Automatic Differentiation 

∂J
∂ x

gradient by reverse/adjoint mode AD

Ci x = (
∂ S i

∂ q i
) W Cq W t (

∂ Si

∂ qi
)
t

x

J i , j =
1
2 (R i−R j−K ij)

t (C i+C j+C kij)
−1 (Ri−R j−K ij)

(Ci+C j+C kij)
−1 (Ri−R j−K ij) (Ci+C j+C kij) x = (R i−R j−K ij)by solving

Ci is huge, handling and inverting a huge matrix is expensive
   ==>  using matrix free algorithms

∂ Si

∂q i
v matrix free by forward/tangent mode AD 

using conjugate gradient
solver

minimization of J by limited memory quasi Newton BFGS algorithm using:
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measurement equations METOP-A,B (MHS)

𝑅ME = 𝑅OBCT + a∗(𝐶E−𝐶OBCT ) + u∗a2∗(𝐶E−𝐶DSV )∗(𝐶 E−𝐶OBCT )

R : radiance
T : brightness temperature
ν : frequence

sensor state variables:
CDSV : Deep Space View counts
CE : Earth counts
COBCT : On Board Calibration Target counts
u : non-linearity factor
gE : portion from Earth (APC)

a =
𝑅OBCT−𝑅DSV

𝐶OBCT−𝐶DSV

𝑅 =
1
gE

∗[𝑅ME − (1−gE )∗RDSV ]

Antenna Pattern Correction (APC)

Two-point calibration

3 varied parameters

T =
hc / kb∗ν

log( 2hc
2ν 3

R
+1)

Brightness temperature by inverse Planck law

ROBCT=Planck (T OBCT )

RDSV=Planck (T DSV )

T=Planck−1(R)

Antenna temperature by Planck law

R =
(2hc2∗ν3)

(e((hc / kb∗ν)/T )−1)

inverse Planck law

Planck law
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measurement equations Fengyun-3A (MWHS)

𝑅ME = 𝑅OBCT + a∗(𝐶E−𝐶OBCT )

sensor state variables:
CDSV : Deep Space View counts
CE : Earth counts
COBCT : On Board Calibration Target counts
ROBCT : On Board Calibration Target radiance
ui : coefficients of APC
APC1 : pixel dependent Antenna Pattern Correction

a =
𝑅OBCT−𝑅DSV

𝐶OBCT−𝐶DSV

T nl = u1 + u2∗T ME + u3∗TME
2

Non linear correction

Two-point calibration

3 varied parametersBrightness temperature by inverse Planck law

TME=Planck−1(RME)

ROBCT=Planck (T OBCT )

RDSV=Planck (T DSV )

Antenna temperature by Planck law

T = APC1+APC2∗T nl

Antenna Pattern Correction
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measurement equations Fengyun-3B/C (MWHS/MWHS2)

𝑅ME = 𝑅OBCT + a∗(𝐶E−𝐶OBCT ) + u∗a2∗(𝐶E−𝐶DSV )∗(𝐶 E−𝐶OBCT )

sensor state variables:
CDSV : Deep Space View counts
CE : Earth counts
COBCT : On Board Calibration Target counts
ROBCT : On Board Calibration Target radiance
u : non-linearity factor
APC1 : pixel dependent Antenna Pattern Correction

a =
𝑅OBCT−𝑅DSV

𝐶OBCT−𝐶DSV

T = APC1+APC2∗T ME

Antenna Pattern Correction

Two-point calibration

3 varied parametersBrightness temperature by inverse Planck law

ROBCT=Planck (T OBCT )

RDSV=Planck (T DSV )

Antenna temperature by Planck law

TME=Planck−1(RME)
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measurement equations SNPP (ATMS)

T lin = TW + (CE−COBCT ) ∗
TW−TC

COBCT−C DSV

sensor state variables:
CDSV : Deep Space View counts
CE : Earth counts
COBCT : On Board Calibration Target counts
u : non-linearity factor
APC : pixel dependent Antenna Pattern Correction

T C = A+B (TCOSMIC+dT C )

T = T nonlin−APC

Antenna Pattern Correction

Cold and warm target temperatures

TW = A+B (T OBCT+dTW )

T nonlin = T lin + u∗(1−4 (T lin−T E

TW−T C
−0.5)

2

)

Antenna temperature

Non-linear correction 3 varied parameters
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Harmonisation setup for microwave
Sensors: MetOp-A, MetOp-B, ATMS, Fengyun-3A, -3B, -3C

● Cold match-ups:
– difference in space: 10 km
– difference in time: 5 min
– difference in viewing angle: ratio of path length < 0.05

● Intermediate warm match-ups, LEO-GEO:
– MVIRI homogene 3x3pixel scene, std.dev. < 1 K
– MVIRI ΔT < 1 K
– difference in space: 4 km
– difference in time: 5 min
– difference in viewing angle: ratio of path length < 0.05

● Warm match-ups, LEO-LEO:
– difference in space: 10 km
– difference in time: 6 hours
– difference in viewing angle: ratio of path length < 0.05

● 1.5 million match-ups by 9 sensor pairs
● Channel 183.31 ±1 GHz, also available are ±3 GHz, and ±7 GHz
● 15 parameters to optimise: 5 sensors a 3 parameters
● one sensor serves as reference, i.e. only radiances with uncertainties are used

(not necessary, can be replaced by additional constraint on parameters)
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Microwave sensor differences
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Residuals after harmonisation

● mean residuals are close to zero
● distribution is similar for all pairs
● a problematic sensor would stand out
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Distribution of residuals

Final residuals are
allmost Gaussian distributed.
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Posterior uncertainty covariance matrix

∂J 2

∂ x2

Full Hessian by vector forward 
over scalar reverse mode AD

posterior uncertainty covariance
is inverse Hessian 

Ci = (
∂ J 2

∂ x2 )
−1

Please note, correlation is covariance divided by variance
correlation matrix
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Conclusions

● Harmonisation of Microwave sensors based on MEIV successful

– misfit is reduced substantially

– posterior statistics are consistent with assumptions

– full range coverage by including ‘warm’ match-ups from targets changing slowly

● For good results, estimation and propagation of uncertainties is important

● Automatic Differentiation (AD) with TAF (Transformation of Algorithm in Fortran) greatly helped

– only function code must be written

– efficient derivative codes generated ‘on the fly’

– can operate in scalar mode for matrix free uncertainty propagation

or vector mode for full Jacobian/Hessian computation
● Optimal parameters are used to produce new FCDR’s with uncertainties

● Algorithm published in remote sensing 2019, 11(9), 1002; https://doi.org/10.3390/rs11091002
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Outlook

● Analysis of remaining misfit

– revisit measurement equation formulation

– introduce new parameter in measurement equation

● Simultaneous harmonisation of several channels if the misfit is correlated (eg. HIRS)
● MEIV Harmonisation can be extended to use other sources of information

– simulated radiances

– known targets
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