

living planet symposium BONN 23-27 May 2022

TAKING THE PULSE OF OUR PLANET FROM SPACE

EUMETSAT CECMWF

Combining GEDI and Sentinel data for structural forest parameter estimation

Manuela Hirschmugl, Florian Lippl, Hannah Scheicher, Carina Sobe

26.05.2022

ESA UNCLASSIFIED – For ESA Official Use Only

Overall aims of the project

- 1. To assess the quality of GEDI data for difficult terrain & near-natural forests in Austria
- 2. To generate so-far not available forest attribute maps forest structural parameters
- 3. To evaluate the mutual benefit of combining GEDI data with Sentinel-1 and Sentinel-2 data sets for forest monitoring purposes

Quick intro to GEDI

Space-based Lidar (ISS) Point-wise information

- waveform
- terrain & canopy
 heights
- height metrics
- structure indices (FHD)
- canopy cover fraction
- AGB
- LAI

- wall-to-wall gridded products © https://gedi.umd.edu/

1 - Usability and quality of GEDI data under difficult conditions

- NP Kalkalpen and NP Gesäuse (eLTER Site) mountainous terrain, steep slopes, near natural forest → perfect conditions (= the remote senser's worst nightmare)
- ALS data acquired 2018

Data filters applied (GEDI plots used):

- Quality flag = 1
- Degrade flag = 0
- No changes between 2018 & 2020
- No winter observations (deciduous) (only plots from June – October 2019 & 2020)

1 - Usability and quality of GEDI data under difficult conditions 1.1. – terrain height

1 - Usability and quality of GEDI data under difficult conditions 1.1. – terrain height

Dependence on canopy cover and canopy height

1 - usability and quality of GEDI data under difficult conditions 1.2. – canopy height

GEDI

overestimates small trees and

underestimates large trees

- → Dependence on slope again?
- → Dependance of canopy cover as well?

1 - Usability and quality of GEDI data under difficult conditions 1.2. – canopy height

coverage	0%-100%	
statistics	RMSE $[m]$	\mathbf{R}^{2}
slope $< 90^{\circ}$	7.38	0.43
slope $< 50^{\circ}$	7.25	0.45
slope $< 35^{\circ}$	6.82	0.50
slope $< 20^{\circ}$	6.12	0.63

Summary canopy height:

- for small trees overestimated, for large trees underestimated, RMSE ~ 7 m
- for steep slopes less accurate
- for open forests less accurate

>> generally in line with previous findings, but slightly lower R²s (Adam et al., 2020; Liu et al., 2021, Urbazaev et al., 2021, Potapov et al., 2021: RMSE 7.2/R² 0.7)

Foliage height diversity (FHD)

MacArthur 1961: "The more equal the proportion of vegetation coverage at every height, the higher the FHD value"

Rishmawi et al. 2021: "Foliage height diversity is a canopy structural index that describes the vertical heterogeneity of foliage profile" "Finally, the GEDI-derived FHD is calculated from the PAI vertical profile and is a measure of the complexity of canopy structure with higher FHD values often associated with multiple canopy layers"

 $\begin{aligned} \text{FHD} &= -\sum_i p_i * \ln(p_i) \\ p_i \ \dots \ \text{vertical PAI profile in the ith layer, summed over the number of layers} \end{aligned}$

- Is FHD describing vertical structure or no. of layers?
 Or do we need to generate another indicator from GEDI?
- Theoretical examples >>

■ Sidestep: when working with L1B (waveform) → do not use the spatial subsetting option → data deteriorated --> GEDI DAAC team is working on it

Geo reium und Raumforschung

3 – New Forest Parameters Structure/Layers

GEDI amplitude, ALS return pulse [%]

One layer, low vertical structure

One layer, medium vertical structure

Multi-layered, high vertical structure

Visual interpretation of GEDI & ALS waveforms in **428 GEDI shots**

Two attributes

- Number of layers (single, double, multi-layered) ¹/₆
- Vertical Structure (low, medium, high)

Results:

	NUMBER OF LAYERS		
	ALS	GEDI	
Single	338	255	
Double	80	119	
Multi-layered	10	54	

	VERTICAL STRUCTURE		
	ALS GEDI		
Low	61	23	
Medium	198	250	
High	169	155	

Interpretation plots GEDI FHD / ALS

Number of layers		GEDI		
		Single	Double	Multi
ALS	Single	223	86	29
	Double	30	32	18
	Multi-layer	2	1	7

Overall compliance ALS-GEDI: 61.21 %

Vertical structure		GEDI		
		Low	Medium	High
	Low	19	41	1
ALS	Medium	4	139	55
	High	0	70	99

Overall compliance ALS-GEDI: 60.05 %

Comparison of GEDI interpretation with FHD values for vertical structure

Table 3: p-value - GEDI structure

FHD

3 – New Forest Parameters Structure/Layers

GEDI number of layers interpretation Comparison of GEDI interpretation 3.25 mean = 3.18 with FHD values mean = 3.13 3.00 for number of layers mean = 2.9 n = 54 n = 119 2.75 GEDI FHD 2.50 Number of layers $\mathbf{2}$ 3 1 1 1 2.25 $\mathbf{2}$ 0.161 n = 254 0.110.23 1 2.00 Table 4: p-value - GEDI number of layers 1.75 2 3 1 GEDI number of layers

3 - Combining GEDI with Sentinel-1 and -2 Preprocessing

3 - Combining GEDI with Sentinel-1 and -2

Some examples (only flat areas (< 15°)) - very first results - work ongoing</p>

Conclusions

- 1. Steep slopes are a main problem decreasing accuracy and thus hindering the use of GEDI
- 2. Forest structure is still not fully clear in terms of definition what do we really want to map?
- 3. No of layers seems to be reflected in FHD values way to go
- 4. Both S-1 (flat areas only) and S-2 have some explanatory power for FHD

Next steps

- 1. Test slope-adaptive metrics?
- 2. Forest structure definition discussion with foresters (i.a. at ForestSAT conference in Berlin in August 2022 - call for abstracts open until 31 May!)
- 3. maybe come up with a new structure indicator?
- 4. Better understand differences in waveforms between GEDI and ALS
- 5. Include all S-1 and S-2 input bands in a RF regression estimator for FHD and analyse the results

Thank you very much for your attention

This study is supported by the Austrian Research Agency FFG under the Austrian Space Application Programme (ASAP) No. 38308664

