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AR - The Antarctic Ice Sheet

< Largest Earth’s fresh-water reservoir

< Largest uncertainty in future sea-level change

< Key role in Earth’s energy balance through impacts
on atmosphere, ocean, primary productivity
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Seroussi, 2019

Mass change trend among ice-
sheet models which are tuned to
the current state of Antarctica
(thickness and surface velocity)
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Seroussi, 2020

Thinning and acceleration (mean and
standard deviation) in the ISMIP6
coordinated experiments
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Bell et al., 2018

Land Ice Flow
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Modified from Nowicki

and Seroussi, 2018
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DTA demonstrator

Data assimilation into a regional climate model

« EO and simulation of the Antarctic system

« Dynamic and interactive 4D environment
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Floating IceTongue  surface warming ~ *ubm

L o m  dmelting % melting
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Glacial
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Demonstrator:

Surface melt - Data asSimilation

< Space-based automatic and NRT detection of liquid water at the surface Number of melt day in 2012-2013
of the Antarctic Ice Sheet, and space-based mapping of surface albedo s i

< Data assimilation in regional climate model MAR

|/ [/ underestimation

overestimation —

X (km)
Nbr of mell days in 2012 from MAR

20181005

Assimilation of PMW-derived melt and

broadband albedo in MAR
Sentinel-1

Assimilation of albedo can be beneficial during the core of the season.

ESA S3Snow project has developed an algorithm to retrieve broadband albedo for Sentinel
3 OCLI » SICE algorithm is in production at 1 km over Greenland (J. Box)

IGE Digital Twin Antarctica activity:

Optimization of the SICE algorithm and implementation on CREODIAS cloud

oLcl Optimised SICE BB
. _ albedo Projection
= 3500 |mzia.ng¢::‘,[;ILsummer "|(> 1 month processing - on MAR grid
for 1 summer)
300m resolution 12 km resolution

ML classification (RF)

: Cloud cover is omnipresent. Very conservative cloud mask applied to avoid cloud
of supra-glacial Lakes

contamination - remain 25% of valid data on average per day (on the ice sheet)
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Demonstrator:

Tracking subglacial melt water fluxes

+ Billions of time-dependent measurements tracking the ice sheet’s surface
< ML algorithms detecting subtle patterns in surface elevation change - deriving onset,

- extent, and fluxes

Elevation Change ‘
o

Malczyk et al., GRL, 2020

Image and time-series analysis
to automatically detect location,
timing and flux from active sub-
glacial Lakes

< Coupling of EO-based lake fluxes with simulations

to track melt water fluxes through the system
IGO0 &~
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Demonstrator: @esa

Tracking impact of subglacial melt water on ice-ocean-biology interactions

Ice sheet, sub-glacial, ocean, sea-ice, bio-chemistry interactions - joined Observation and Numerical
simulations across all 5 systems e
Floating Ice Tongue surfl::ere\::reming submarine

From analogues in Greenland we can expect that the buoyancy added by runoff et s isaling melting changes in
causes -~ N ; sea-ice
* Mixing near the grounding line .

Ice

* Increased melting, and modified circulation along coast Dynamiicy — Rl

* Transport of nutrients from subglacial environment (iron) —— = i";i'f,’.’.."?.i"

As part of the demonstrator: il
irculation

- Coupled ice sheet - ocean model - Subglacial hydrology model
- Subglacial run-off implementation in ocean model
- Coupling of bio-chemical model (BLING) with MITgcm

Impact on bio-chemistry

Subglacial water flux
Ocean dynamics Iron Carbon

Winter

—

Elevation Change ‘
X

I",, - ‘ Impact on ocean

circulation and ice
shelves melt rate

ice shelf melt
S —f

Plankton bloom
reduces DIC
concentrations,
drawing carbon
down from
atmosphere

Summer
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Demonstrator:

Virtual 4D Environment

Overview of ice sheet, sub-glacial, ocean dataset 4D slicing

Subglacial network

Ocean circulation ¥
(0> 0000 2

User stories

Interplay of Subglacial Hydrology,
Ice, & Ocean

f « { D N N > )

Introduction

Dashboards

DTA PM4 - Example dashboards for Decision Makers

Dashboards - Global impacts

Move through

oTA
scenarios Digital Twin
Antarctica

S . . dynamically
Interplay of Subglacial Hydrology, Exploration, analysis
Ice, & Ocean i N N st | C——@ - P e
9 o data and
4 refine results —— : Interactive
esa ) = ;| |
~ earthwave 8
Welcome to Antarctica’s digital twin .": AP | 3 3
‘Tracking Worst Case Climate Scenarios by 2100 ¢
This is a 4D interactive science story that will take you to the upvter Engi ) R 4
Amundsen Sea Sector and show you the interplay between subglacial IGE J py QUETV ng ne “S;?;W Cumalative Sea Level Rise: annile Antie :
hydrology, the ice, and the ocean \ . ' 42.1em | *121% 340M +48% SHe = LAt Lt ° o
[T] 0]
Numiber of eople on land exposed by 2050 assuming RCP 4.5 Pt bty L e o it

You will be able to explore and interact with a reconstruction of

* LIEGE

Digital
Twin . Antarctica driven by real data, numerical simulation, and Al
e université Analysis
A E”'“?;ﬁl"éﬁzéﬁigg,D‘g“a‘ Click start to find out more! . . . pLJt h on 2 (1N
Lancaster E23 Visualisation - L
University —— Interactive maps for
4 countries/local
regions
.
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Download data o
options Go to data
source
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Digital Twin Earth - Antarctica @esa

Next steps

Analysis-ready data-cube of the “Antarctic system”
Across ice sheet, subglacial, ocean, atmosphere and biological systems

- Collection of observations, re-analysis products, simulation
- Al-based feature extraction
- Need for constant stream of new products
Observations Pata Cubes Extract o tj:*e
000 [ 19926~ ¥ Bl 2 1995 LAy 20068 W7 gl T 2010 W7 P 0 2015 z = Transform
fz gy s DG o 2 g‘
SR YLD Bl -' g
o || b || Y] S -
Observations with calibrated modelled data -
::Zs 5‘ m ‘ w 1‘ 5 E Hugonnet et al., Nature, 2021
./_,,: API|
Hogg et al., GRL, 2017 Jili’ltﬁf Query Engine
| A
=0 = 3 = o @ python

Visualisation



Digital Twin Earth - Antarctica @esa

Next steps

Key processes modulating ice sheet response to climate
Buttressing Tipping points e.g. MISI, MICI

(a) Marine Ice Sheet Instability (MISI)

Retrograde slope
g P <— Retreating grounding line

— Flux at the grounding line
1‘ Isostatic rebound

E .
- 2 E :
8 . S i
S 5 g
S 2 -
S == Antarctica ° = de s\0P° -
3 3,000 West Antarcti g = Reirogre Grounding line  Antarctic bed
@ —o, E — eSs ntarctica | ©
L = == East Antarctica 102 (b) Marine Ice Cliff Instability (MICI)
. N —4000} ™ Antarctic Peninsula o Pro/retrograde slopes
. ST N 44 Y N I IMBIE 2012 129 V| Hydro-fracturing
n T Y After 5000 o
1990 1995 2000 2005 2010 2015 2020 \,\'\ Cliff failure
5 Year
Profretrograde slope
Grounding line  Antarctic bed
SROCC, 2021
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——— | Digital Twin Earth - Antarctica
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Next steps

Climatic drivers to ice loss,

i 'ﬁ"“_“*”q‘#*::%%%

e.g. tropical teleconnections, Silb-ARtarcHE %%%%{ "“‘%j‘::,
: Front S————

greenhouse gases, ozone depletion | bolar front, Southern

ACC Front

Warm water ~
intrusion
."' Offshore cold :
wind advection
\

Li, X. et al., 2021

Onshore warm
wind advection #

Enhanced Ekman
suction
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