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Copernicus Satellites S5P and S4

Sentinel-5 Precursor (S5P) and Sentinel-4 (S4) are passive earth observation
satellites (with UV/VIS spectrometers) of the Copernicus programme:

- S5P

Launched in october 2017
Sun-synchronous orbit at ~ 824 km

Launch date due 2023 ‘/
Geostationary ?‘ .

DLR is responsible for the operational CLOUD product for both satellites
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Machine Learning in Remote Sensing

Why Machine Learning?

Dramatically increased amount of data with latest generations of earth observation satellites
Near real time requirements (NRT) for many products

> Retrieval algorithms have not only to be accurate but also to be very fast

> Application of machine learning techniques to improve performance compared to
classical algorithms

Machine Learning for Inversion Problems:

Atmospheric retrieval problems can be formulated as inversion problems:

Find parameters x that minimize residual ||F(x) — y||, between a known vector y
and the mapping of the parameters F(x) - where F is a predefined function

Observed and fitted spectrum

In context of atmospheric retrieval:
x: State of atmosphere i
y: Measured spectrum
F: Radiative transfer model (RTM)
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Two approaches for neural networks use

1. NN as forward model of a spectral fitting algorithm:

implements F: X — Y, state of atmosphere — spectrum

substitutes and approximates the RTM

gradients (w.r.t to retrieval pamareters) usually need to be provided for solver
called in each iteration

Inversion with RTM as Forward Model Inversion with NN as Forward Model
Forward Model Forward Model
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Solver - Solver <
calls forward model P — calls forward model

n iterations until convergence until canvergence

2. NN for direct inversion:

implements F~1:Y — X, spectrum — state of atmosphere
F~1is generally unknown, can only be inferred through samples
No gradients needed after learnnig
called only once _—

spectra, viewing geometry,
surface information

Outputs:
cloud parameters
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1. NN as forward model - lifecycle chain

How to get from RTM to NN for algorithms in S4, S5P, ...?
> General procedure to replace RTM of an inversion algorithm by a NN:
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1. NN

Evaluation of NNs

performances for different topologies

loss

validation losses for different network topologies
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3. NN

performances for different dataset samplings

Error histograms for different samplings of the training data set
2000 epachs, tanH activation, min-max input- + output scaling
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2. NN performances for different activation
functions

Mean radiance for different activation functions
2600 epochs, 5-30-80-80-86-345 topology, min-max input- + output scaling
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4. Operational S5P NN performance

Error Histograms for operational S5P CLOUD product neural networks

rel. error clear-sky median: 0.141 % W clear sky (5-100-100-107)
rel. error cloudy median: 9.6953 % wm fully cloudy (7-100-100-107)
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Spectral fitting challenges

- With a neural network as forward model, a spectral fitting algorithm can be used for the retrieval
of the atmospheric parameters

. . . Residuals between forward model and input spectrum
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Residual map for an ,easy“ problem with a well defined global minimum




Spectral fitting challenges - examples

‘stretched’ minimum:

Residuals between forward model and input spectrum
surface height: 0.756km, surface albedo: 0.976,
solar zenith angle: 72.182°, viewing zenith angle: 26.62°, relative azimuth angle: 36.6°
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forward model error:
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diffuse minimum:

Residuals between forward model and input spectrum
surface height: 3.04km, surface albedo: 0.252,
solar zenith angle: 87.673°, viewing zenith angle: 84.727°, relative azimuth angle: 130°
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2. NN for Direct Inversion

- NN for direct inversion can avoid some of the issues of the spectral fitting:
no fine adjustment of the retrieval algorithm (e.g. regularization parameter, tolerances for
convergence, etc.), all settings via the hyperparameters and training of the network

no a-priori necessary
not as affected by local minima
only one call (iteration) per problem

- Input: spectra, viewing geometry, surface parameters, Output: cloud parameters
- evaluation for comparison with forward model NN in spectra fitting for validation dataset:
topologies: NN as forward model: 7-66-77-26-89-78-94-99-107

NN for direct inversion: 112-80-80-80-80-2
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Error Histograms for retrieved cloud top height
16000 validation samples

direct inversion rel. error abs median: 0.959 % mmm direct inversion
forward model rel. error abs median: 2.459 %
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Error Histograms for retrieved cloud optical thickness
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- Better results for direct inversion NN: CTH: 0.96% vs 2.46%, COT: 11.92% vs. 17.06% (med. abs. rel. error)




Bayesian Neural Networks

Drawback: No indication for the quality of the results for the direct inversion NN (,blackbox®)
In contrast to the spectral fitting with e.g. iterations, convergence, residual, etc.

> Bayesian neural networks (BNN):

learns uncertainties in model parameters
output is a probability distribution
more complex and are harder to train:
- example: network with (112, 20, 20, 20, 2):
- NN: 3,142 parameters
BNN: 2,735,179 parameters
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Bayesian Neural Networks - Results

BNN Relative Errors
5 spectra components as input, (28, 28, 28) hidden layers, 10000 validation samples

1. Overall, BNN performs slightly worse than the

cth rel. error abs median: 4.068 %  mmm cloud top height (cth)
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Conclusions and Outlook

1. NN as forward models:
can improve speed of existing retrieval algorithms by orders of magnitude through
substitution of existing radiative transfer model (RTM)
many properties from classical retrieval algorithms are inherited:
retrieval diagnostics
difficulties with ill posed problems, local minima

2. NN for direct inversion:
easy to apply, good initial performance, no a-priori needed
conventional NNs are ,black boxes®, no error quantification
BNNs as a possibility to overcome this:
provide error quantifications
more complex and harder to train

> NNs for direct inversion, especially when using BNNs with error quantification, have great
potential for retrieving cloud properties for S4 / S5P as an alternative to the current approach
that uses NNs as forward models
Further investigations in hyperparameter selction and learning have to be made
Invertible neural networks (INN), that learn forwards and backwards and can also provide
distributions are another interesting approach that should be followed

For further questions, please contact me: Fabian.Romahn@dlr.de
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