Deep Learning for Monitoring Permafrost Disturbances

Konrad Heidler¹, Ingmar Nitze², Sophia Barth², Lichao Mou¹, Xiao Xiang Zhu¹, Guido Grosse²

Wissen für Morgen

 1 German Aerospace Center (DLR) / Technische Universität München (TUM)

² Alfred Wegener Institute (AWI)

26.05.2022

Retrogressive Thaw Slumps (RTS)

- Dynamic soil erosion from thawing
- Small: Few m^2 up to $1 km^2$
- Often undetected

Remote Sensing of RTS

Challenges

- Sparsity of Targets
- Vast Areas to Monitor
- No Strict Definitions for RTS outlines

Study Sites

Study Sites

Dataset Creation

Manual Digitization

- PlanetScope as main data source
- Imagery from 175 PlanetScope scenes
- More than 2100 RTS digitized.

Temporal Distribution

Auxiliary Data

Planet Imagery

Auxiliary Data

Planet Imagery

Auxiliary Data

Auxiliary Data

Segmentation for RTS mapping

Segmentation for RTS mapping

Segmentation for RTS mapping

Approach

- Pixel-wise predictions
 - 0: Background
 - 1: RTS
- Use Semantic Segmentation models

Models

Models

Models

Institut für Methodik der Fernerkundung Remote Sensing Technology Institute

UNet [1]

UNet++ [2]

DeepLab v3 [3]

Training Protocol

Preprocessing

- 1. Rasterize target vectors
- 2. Stack input data
 - PlanetScope
 - NDVI
 - Landsat Trends
 - Elevation
 - Slope
- 3. Cut data into tiles

Training Protocol

Preprocessing

- 1. Rasterize target vectors
- 2. Stack input data
 - PlanetScope
 - NDVI
 - Landsat Trends
 - Elevation
 - Slope
- 3. Cut data into tiles

Dense Training

Use all available training tiles.

Sparse Training

Use only training tiles that

contain targets.

Training Protocol

Preprocessing

- 1. Rasterize target vectors
- 2. Stack input data
 - PlanetScope
 - NDVI
 - Landsat Trends
 - Elevation
 - Slope
- 3. Cut data into tiles

Dense Training

Use all available training tiles.

Sparse Training

Use only training tiles that

contain targets.

Full Training

Sparse Training followed by Dense Training.

Evaluation Protocol

Spatial Leave-One-Out Cross Validation

- Train using data from 5 study sites.
- Evaluate performance on the 6th study site.

Results

Numerical Results

Study Site Banks Island Herschel Island Horton Delta Kolguev Island Lena River Tuktoyaktuk Peninsula

Study Site	Best Model
Banks Island	UNet++
Herschel Island	DeepLab v3
Horton Delta	UNet++
Kolguev Island	UNet++
Lena River	UNet++
Tuktoyaktuk Peninsula	UNet++

Study Site	Best Model	Top IoU
Banks Island	$UNet{++}$	0.39
Herschel Island	DeepLab v3	0.39
Horton Delta	UNet++	0.55
Kolguev Island	$UNet{++}$	0.48
Lena River	UNet++	0.58
Tuktoyaktuk Peninsula	UNet++	0.15

Study Site	Best Model	Top IoU	90% loU
Banks Island	$UNet{++}$	0.39	0.08
Herschel Island	DeepLab v3	0.39	0.32
Horton Delta	UNet++	0.55	0.51
Kolguev Island	UNet++	0.48	0.43
Lena River	UNet++	0.58	0.50
Tuktoyaktuk Peninsula	$UNet{++}$	0.15	0.08

Study Site	Best Model	Top IoU	90% loU
Banks Island	$UNet{++}$	0.39	0.08
Herschel Island	DeepLab v3	0.39	0.32
Horton Delta	UNet++	0.55	0.51
Kolguev Island	UNet++	0.48	0.43
Lena River	UNet++	0.58	0.50
Tuktoyaktuk Peninsula	UNet++	0.15	0.08

Study Site	Best Model	Top IoU	90% loU
Banks Island	$UNet{++}$	0.39	0.08
Herschel Island	DeepLab v3	0.39	0.32
Horton Delta	UNet++	0.55	0.51
Kolguev Island	UNet++	0.48	0.43
Lena River	UNet++	0.58	0.50
Tuktoyaktuk Peninsula	UNet++	0.15	0.08

Results – Lena River

Results – Horton Delta

Results – Horton Delta

Conclusion

- Deep Learning is strong tool for RTS detection
- Spatial variability of RTS is large
- A larger dataset (in development) will likely lead to better results

Conclusion

- Deep Learning is strong tool for RTS detection
- Spatial variability of RTS is large
- A larger dataset (in development) will likely lead to better results

Code

Code: https://github.com/initze/thaw-slump-segmentation Data: https://github.com/initze/DL_RTS_Paper

References i

- Olaf Ronneberger, Philipp Fischer, and Thomas Brox. "U-Net: Convolutional Networks for Biomedical Image Segmentation". In: Proc. Int. Conf. Med. Image Comput. Comput.-Assist. Intervent. (MICCAI). Ed. by Nassir Navab et al. Oct. 2015, pp. 234–241.
- [2] Zongwei Zhou et al. "UNet++: Redesigning Skip Connections to Exploit Multiscale Features in Image Segmentation". Jan. 28, 2020. arXiv: 1912.05074 [cs, eess].
- [3] Liang-Chieh Chen et al. "Rethinking Atrous Convolution for Semantic Image Segmentation". Dec. 5, 2017. arXiv: 1706.05587 [cs].

