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Motivation

Image: Global Trade Team SDN BHD

• Geological or soil patterns often spatially much 
more complex than objects in other image 
detection diciplines where 2D or 3D neural 
netwoks function well

• Shape of a rock is not necessarily indicative for 
the minerolgy of the rock but for larger 
geologial processes

Exemplary 3D CNN

Image modified after : Nagasubramanian et Al., 2018
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DeepGeoMap: Concept

• 1D deep learning convolutional neural network architecture for geological 
hyperspectral classification and mapping

• Spectrally focused, and spatial information independent

• Allows the models to be trained with spectral data from many different instruments 
(including point-spectrometers)

• Requirement: same spectral region and number of bands
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DeepGeoMap: Concept

• DeepGeoMaps architecture represents a signal analysis tool that can be used for 
any kind of signal data classification and categorisation 

• One of the main ideas:  train models with hyperspectral images of geochemically 
validated samples acquired under laboratory conditions 

• avoids or reduces the number of false positives due to mixed-spectra or falsely 
labelled training data/pixels in lower resolution airborne or satellite data
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DeepGeoMap: Architecture

Backpropagation methods:

• categorical crossentropy loss function with an Adam gradient descent optimization
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Data Input

Image: Brosinski et al. 2019

Data is split 60/40 into training 
and test data and randomized 
beforehand

Image: Brosinski et al. 2019

Conversion to 1D Data (Array flatening):

Image: Ebner et al. 2021

Spectral 1D 
array input (xTrain)

Label input  e.g. ‘Kaolinite’ as 
binary (yTrain)

Input for Neural Net: 

Conversion to binary numbers (one hot encoding):
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Methods: Example Data Apliki + Acquisition

Image: Koerting, 2021

Apliki mine

Im
age: G

oogle m
aps 2021

Cyprus

Image: Koerting, 2021

Outcrop mine face scan + sample measurements in Lab
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Methods: Data Samples - Apliki mine

A: Apliki samples in RGB color B: Clustering based on geochemistry

Image A &B: Koerting, 2021
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Methods: Data Samples - Apliki mine

(Koerting, 2021)
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Methods: Data Pre-Processing Apliki mine

not used
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Results: Apliki Samples

A: DeepGeoMap Classification:
Validation Accuracy:  98.83%

B: Cluster/class validation
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Results and Discussion: Apliki Samples

Image B , C, and  D:  Koerting, 2021

A: DeepGeoMap Classification:
• 400 bands
• Accuracy:  98.83% (including shadows)

B: Binary Feature Fitting (BFF):
• 400 bands
• Accuracy: 81.39% (excluding shadows)

C: ENVI Spectral Angle Mapper (SAM):
• 400 bands
• Accuracy:  85.13% (excluding shadows)

D: Binary Feature Fitting (BFF):
• downsampled to 70 bands
• Accuracy: 85.6% (excluding shadows)
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Results: Apliki Mine Face Scan

Image: A  Koerting, 2021 ; B: Antivachis, 2015

• DeepGeoMap  model was trained with the 
sample scans

• Classification time of mine face scene ~30s
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Conclusion

• Generally good classification accuracies for this type of network, surpassing the accuracies of classical 
algorithms and some other neural networks for some specific geological data sets

• DeepGeoMap models can be trained with large amounts of geochemically validated sample data and hence 
unmixed (or knowledgeably mixed) pixels 

• Models trained with laboratory data can classify larger scale mine face, arial, or satellite imagery

• High amount of training data is required in comparison to classical algorithms like EnGeoMAP or Binary Feature 
Fitting (e.g. more than 20.000 spectra vs. 15 library spectra)
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Conclusion

• 1D DeepGeoMap architecture also allows models to be trained with beforehand acquired ground 
truth point-spectrometer data and/or laboratory image sample data (e.g. of rocks, powders, soil 
samples) 

• Trained models can rapidly classify any kind of hyperspectral target image (classification times of 
few seconds to a few minutes depending on image size + computational power)

Useful for classification of large image collections with the same target classes

• Spatially independent classification makes position-dependent ground truthing less important

Similar to spectral library based classifications of classical algorithms (such as EnGeoMap)
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DeepGeoMap (published as thesis) 

https://doi.org/10.25932/publishup-52057

urn:nbn:de:kobv:517-opus4-520575

doi: 

URN: 

Also accessible via researchgate or google. 

https://doi.org/10.25932/publishup-52057
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-520575
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Thank you for your attention!
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Outlook

• Training of  DeepGeoMap models with point spectrometer data and then classify satellite scences 
(EnMAP) with these models

• Use DeepGeoMap for the classification of secondary iron mineral differentiation and classification 
• e.g. hematite, goethite and jarosite

• Create a user interface (UI) for DeepGeoMap
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Results and Discussion: Apliki Mine Face Scan 

Image B , C &D: Koerting, 2021
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