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Introduction

• Carbon dioxide (CO2) is one of main contributors to climate change, and most
countries have agreed on reducing their CO2 emissions in the coming years.

• Understanding atmospheric CO2 fluxes, i.e. emissions and sinks of CO2, is a
fundamental problem in climate science that can help monitoring CO2 global
emissions.

• There exist several models to estimate global CO2 fluxes. These are based on
inverse modelling using ground-based CO2 measurements, and more recently also
satellite-based measurements. These also use wind fields, which are very
time-consuming to compute.

• We will use a ML approach to estimate global CO2 fluxes using satellite
data.
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CO2 flux models: regression values

Global CO2 fluxes can be estimated using
inverse modelling.

• CarbonTracker CT2019b CO2 fluxes,
developed at NOAA Global Monitoring
Laboratory, available from 2000 to
2018.

• Copernicus Atmosphere Monitoring
Service (CAMS) CO2 fluxes, available
from 1979 to 2020.

These will be used as regression values.

Figure: (1) CT2019b (2) CAMS surface, January 2015
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Satellite data: features

We can use satellite measurements to track the amount of different gases present in the
atmosphere. In particular we use the following monthly averages from 2015 to 2018:

• XCO2 anomalies based on XCO2 measurements 1 from OCO-2, with a spatial
resolution of 1.29× 2.25 km2 across a narrow swath. Available since July 2014.

• CO from MOPITT, with a resolution of 1◦ × 1◦. Available since March 2000.

• NO2 from OMI, with a resolution of 0.25◦ × 0.25◦. Available since October 2004.

• SIF 2 from OCO-2, at a 1.29× 2.25 km2. Available since September 2014.

These are re-gridded at 1◦ × 1◦ to be used as features, as well as hemisphere (north or
south) and month.

1 XCO2 = space-borne column-averaged CO2 dry air mole fraction.
2 SIF = solar induced fluorescence.
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Satellite data: features

Figure: (1) XCO2 anomalies and (2) CO, January 2015. Figure: (3) SIF and (4) NO2, January 2015.

L. Amorós: 5 / 13



Machine learning models and training

We consider 2 different machine learning (ML) models based on decision trees:

(1) Random Forest algorithm, parallel learning.

(2) Extreme Gradient Boosting algorithm (or XGBoost), iterative learning.

We differentiate CO2 fluxes:

• For CarbonTracker: biospheric, fire, fossil and total CO2 fluxes.

• For CAMS: biospheric (which includes fire), fossil and total CO2 fluxes.

As training set we use the following data from 2015 to 2017:

as features: monthly averages of {CO2, CO, NO2, SIF}, hemisphere and month;

as regression values: CarbonTracker CT2019 fluxes or CAMS fluxes.

As test set we use the same data for 2018.
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Predictions of our ML models: XGBoost

Figure: XGBoost vs CarbonTracker, 2018
L. Amorós: 7 / 13



Predictions of our ML models: Random forest

Figure: Random forest vs CarbonTracker, 2018
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Predictions of our ML models: XGBoost

Figure: XGBoost vs CAMS, 2018
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Performance of our ML models
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Predictions of our ML models: XGBoost without CO2

Figure: XGBoost vs CarbonTracker, 2018. Without CO2 data
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Predictions of our ML models: Covid effect

Figure: XGBoost vs CAMS, 2018
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Thanks! Questions?
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