Predicting global CO_2 fluxes using machine learning

Laia Amorós, Janne Hakkarainen, Iolanda Ialongo, Monika Szeląg laia.amoros@fmi.fi Finnish Meteorological Institute 26.5.2022

LMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

Introduction

- **Carbon dioxide** (CO₂) is one of main contributors to climate change, and most countries have agreed on reducing their CO₂ emissions in the coming years.
- Understanding atmospheric CO₂ fluxes, i.e. **emissions and sinks** of CO₂, is a fundamental problem in climate science that can help monitoring CO₂ global emissions.
- There exist several models to estimate global CO₂ fluxes. These are based on inverse modelling using ground-based CO₂ measurements, and more recently also satellite-based measurements. These also use wind fields, which are very time-consuming to compute.
- We will use a ML approach to estimate global CO₂ fluxes using satellite data.

CO₂ flux models: regression values

Global CO_2 fluxes can be estimated using inverse modelling.

- **CarbonTracker** CT2019b CO₂ fluxes, developed at NOAA Global Monitoring Laboratory, available from 2000 to 2018.
- Copernicus Atmosphere Monitoring Service (CAMS) CO₂ fluxes, available from 1979 to 2020.

These will be used as regression values.

Figure: (1) CT2019b (2) CAMS surface, January 2015

Satellite data: features

We can use satellite measurements to track the amount of different gases present in the atmosphere. In particular we use the following monthly averages from 2015 to 2018:

- **XCO**₂ **anomalies** based on XCO₂ measurements¹ from OCO-2, with a spatial resolution of 1.29×2.25 km² across a narrow swath. Available since July 2014.
- **CO** from MOPITT, with a resolution of $1^{\circ} \times 1^{\circ}$. Available since March 2000.
- NO₂ from OMI, with a resolution of $0.25^{\circ} \times 0.25^{\circ}$. Available since October 2004.
- SIF 2 from OCO-2, at a $1.29\times2.25~{\rm km^2}.$ Available since September 2014.

These are re-gridded at $1^\circ\times1^\circ$ to be used as features, as well as hemisphere (north or south) and month.

- ¹ XCO_2 = space-borne column-averaged CO_2 dry air mole fraction.
- ² SIF = solar induced fluorescence.

Satellite data: features

Figure: (1) XCO₂ anomalies and (2) CO, January 2015.

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE Figure: (3) SIF and (4) NO₂, January 2015.

Machine learning models and training

We consider 2 different machine learning (ML) models based on decision trees:

(1) Random Forest algorithm, parallel learning.

(2) **Extreme Gradient Boosting** algorithm (or XGBoost), iterative learning. We differentiate CO_2 fluxes:

- For CarbonTracker: biospheric, fire, fossil and total CO₂ fluxes.
- For CAMS: biospheric (which includes fire), fossil and total CO₂ fluxes.

As training set we use the following data from 2015 to 2017:

as **features**: monthly averages of $\{CO_2, CO, NO_2, SIF\}$, hemisphere and month; as **regression values**: CarbonTracker CT2019 fluxes or CAMS fluxes.

As test set we use the same data for 2018.

Predictions of our ML models: XGBoost

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

Figure: XGBoost vs CarbonTracker, 2018

Predictions of our ML models: Random forest

LMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

Figure: Random forest vs CarbonTracker, 2018

Predictions of our ML models: XGBoost

STITUTET FINNISH METEOROLOGICAL INSTITUTE

Figure: XGBoost vs CAMS, 2018

Performance of our ML models

Features		Total fluxes			Fossil fluxes			Biospheric fluxes	
	CT	CAMS su	CAMS sa	CT	CAMS su	CAMS sa	CT	CAMS su	CAMS sa
NO_2	26.2	15.9	16.8	45.1	44.7	44.7	6	5.3	5.3
CO_2	2.4	2.9	8.5	4.9	2.9	2.9	1.7	2.7	8.7
CO	4.3	5.9	7.7	8.8	4.7	4.7	4.9	6.4	8.9
SIF	14.8	14.4	21.1	8.7	7.4	7.4	19.3	16.9	26.9
North	27.3	35.4	26.1	21.8	32	32	40.1	41.9	26.9
Month	23.5	23.1	16.5	8	6.1	6.1	26.2	24.2	19.4
Year	1.6	2.3	3.3	2.7	2.3	2.3	1.5	2.6	4
Lat	-	-	-	-	-	-	-	-	-
Lon	-	-	-	-	-	-	-	-	-
rmse	291.5	276.1	304.3	193.5	89.7	89.7	220.3	262.8	293.1
mae	153.4	187	210.8	65	37.6	37.6	117.5	177.4	202.5

Table 1: XGBoost model performance

Features		Total fluxes			Fossil fluxes			Biospheric fluxes	
	CT	CAMS su	CAMS sa	CT	CAMS su	CAMS sa	CT	CAMS su	CAMS sa
NO_2	40.2	27.2	26	54.7	65.7	65.7	16.8	16.1	16.5
CO_2	9.6	10.4	15.2	10.1	6.4	6.4	9.5	11.1	14.9
CO	12.4	15.2	7.4	13.3	9.5	9.5	14.2	16.8	18.7
SIF	19.6	22.4	25.6	12.7	10.1	10.1	30.9	26.7	31.8
North	3.6	6	3	2.4	3.7	3.7	6.9	7.6	2.8
Month	12.6	16	10.5	5	3.5	3.5	19.6	18.6	12.1
Year	2	2.7	3	1.8	1.2	1.2	2.2	3.1	3.2
Lat	-	_	_	-	_	-	-	_	-
Lon	-	-	-	-	-	-	-	-	-
rmse	297.8	281.7	315.1	196.3	90.9	90.9	226.6	267.5	299.3
mae	155.5	189.6	217.3	64.9	37.8	37.8	119.7	179.9	206.1

Table 2: Random forest model performance

Predictions of our ML models: XGBoost without CO₂

MATIETEEN LAITOS ETEOROLOGISKA INSTITUTET Figure: XGBoost vs CarbonTracker, 2018. Without CO_2 data

Predictions of our ML models: Covid effect

FINNISH METEOROLOGICAL INSTITUTE

Figure: XGBoost vs CAMS, 2018

Thanks! Questions?

