Satellite observations for runoff and river discharge estimation: STREAMRIDE approach

<u>Stefania Camici</u>, Angelica Tarpanelli, Luca Brocca, Christian Massari, Karina Nielsen, Nico Sneeuw, Mohammad J. Tourian, Shuang Yi, Marco Restano, and Jérôme Benveniste

> Research Institute for Geo-Hydrological Protection National Research Council

Email: stefania.camici@irpi.cnr.it

Website: http://hydrology.irpi.cnr.it/people/stefania-camici/

INTRODUCTION

River discharge monitoring is important both for scientific and operational purposes

Water cycle analysis

Land/oceans freshwater exchanges

Climatic studies

Water quality

Flood risk

Water management

Drought monitoring

INTRODUCTION

The percent change in data availability between the periods 1961–1990 and 1991–2019 is decreasing

-100 to -75
 -75 to -50
 -50 to -25
 -25 to +25
 +25 to +50
 +50 to +75
 +75 to +100

RATIONALE

RIVER DISCHARGE ESTIMATION FROM SATELLITE DATA

STREAM model

Conceptual hydrological model based on:

- satellite precipitation
- soil moisture
- terrestrial water storage data

Distributed information over a basin

RIDESAT Algorithm

Algorithm based on:

- altimetry
- NIR data
- Hydraulic relationships

Local information over a basin

STREAM: THE MODEL

RIDESAT: THE ALGORITHM

$$\frac{Q}{A_b} = \alpha (H - H_{min})^{\beta} \cdot \left(\frac{C}{M}\right)^{\gamma}$$

A_b Basin Area *H* Water surface (from altimetry) *C/M* Reflectance ratio (from NIR band)

 α, β, γ Parameters

Istituto di Ricerca per la Protezione Idrogeologica

Despite the altimetry product is highly performing, the rating curve built with the water level derived by altimetry and observed discharge provides lower performances w.r.t. the proposed approach in which also the contribution of NIR bands is included.

ADVANTAGES/LIMITS OF THE MODELS

STREAM	RIDESAT
Spatial information over a basin	Local information on hydraulic variables
Good capability to reproduce runoff and river discharge	Good capability to reproduce river discharge times series
times series at daily time step	about every 3 days
Fast modelling set-up	Time consuming pre-processing of the satellite data
 Poor reliability in the river discharge (and runoff) estimation over: mountainous basins and snow covered areas highly vegetated areas 	 Inconsistency of the reflectance derived by different multispectral satellite sensors Presence of vegetation, sediments and snow that affect the reflectance derived by multispectral sensors
 Poor reliability in the river discharge (and runoff) estimation in presence of: dam, reservoirs/floodplains Basins with high anthropogenic impact (irrigation) 	 Poor reliability in presence of morphological discontinuity along the river (reservoirs or dykes) not modelled by altimetry river model Presence of outliers in the water level estimated by altimeters with consequent erroneous estimation of river discharge

1. Improvement of the STREAM model and the RIDESAT algorithm

2. Integration of the two satellite-based approaches for river discharge estimation

STUDY AREAS

Mississippi river basin

IMPROVEMENT OF STREAM MODEL

Data issues

Modelling issue

- □ Soil moisture data analysis over highly **vegetated areas**
- Modification of the original model to simulate the presence of snow

Modification of the original model by adding two modules for reservoirs and floodplains

2022 Living planet symposium World Conference Center Bonn Bonn, Germany 23-27 May 2022

Istituto di Ricerca per la Protezione Idrogeologica

IMPROVEMENT OF STREAM MODEL

Altimetry

Near Infra-Red

- Identification of **outliers** and removing thanks to Icesat 2 satellite slope profile
- Overcome of the **discontinuity** related to the reservoirs or dam with a modification of the statespace model that modelled the multi-mission time series from several altimetry data

- Modification of the original algorithm by adding two components: sediments and vegetation.
- Improving the temporal sampling of the time series by considering multi-mission NIR approach to reach the nearly daily resolution.

IMPROVEMENT OF RIDESAT A Gì

 $\mathbf{Q}_{ridesat} = \alpha \cdot (\mathbf{h} - \mathbf{h}_{min})^{\beta} \cdot \mathbf{C} \mathbf{M}^{\gamma}$

Q _{ridesat}	Cal Val
rRMSE	14% 22%
NS	0.89 0.84
KGE	0.94 0.87

Improvements w.r.t. RIDESAT original

Chester	∆NS=+7%	
Memphis	∆NS=+1%	
Manacapuru	∆NS=+1%	
Frequency on average 1 measurement every 1.66 days (compared to 3 days)		

2022 Living planet symposium World Conference Center Bonn Bonn, Germany 23-27 May 2022

Istituto di Ricerca per la Protezione Idrogeologica

THE ADVANTAGE OF RIVER DISCHARGE INTEGRATION

Mississippi@Vicksburg

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

The integration provides continuous and more accurate time series

THE ADVANTAGE OF RIVER DISCHARGE INTEGRATION

The integration improves the performances over all the analysed stations

CONCLUSIONS AND FUTURE PERSPECTIVE

Istituto di Ricerca per la Protezione Idrogeologica

- STREAM model and RIDESAT algorithm, each one with its intrinsic limits, provide accurate satellite-based river discharge estimation
- A simple integration method is able to improve the river discharge estimates
- Both the methods are ready to be extended at global scale
- Different approaches will be used to integrate the method (e.g., data assimilation)

esa

 $(\cdot e)$

Contact information

🖂 stefania.camici@irpi.cnr.it

angelica.tarpanelli@irpi.cnr.it

THANK YOU FOR YOUR ATTENTION

