Direct Observation of Dutch Peatlands in a Mixed Scatterer Interferometry Framework

Enabling Sentinel-1 DS InSAR of the Netherlands

Philip Conroy, Simon van Diepen, Freek van Leijen and **Ramon Hanssen**

 Soft soils (peat and clay) form the majority of Dutch agricultural land

- Soft soils (peat and clay) form the majority of Dutch agricultural land
- Large fluctuations in the land cover

- Soft soils (peat and clay) form the majority of Dutch agricultural land
- Large fluctuations in the land cover
- Large fluctuations in the water table, both natural and artificial

TUDelft

- Soft soils (peat and clay) form the majority of Dutch agricultural land
- Large fluctuations in the land cover
- Large fluctuations in the water table, both natural and artificial
- Very rapid surface movement
- > Non-stationary coherence

ŤUDelft

Phase unwrapping errors

"Dry" soft soils

Extensometer
 measurement

ŤUDelft

Extensometer
 measurement

ŤUDelft

Extreme
 deformation rates

- Extensometer measurement
- Extreme
 deformation rates
- High dynamic range

ŤUDelft

TUDelft

Multilooking & Contextual Data Integration

zegveld_parcel_attributes_full [4]			
*	ob	jectid	1646282
	•	(Derived)	
	•	(Actions)	
		objectid	1646282
		gewascateg	Grasland
		gewas	Grasland, blijvend
		gewascode	265
		length	766.330184259988982
		area	20757.373033329498867
		objectid_2	NULL
		aanid	27336
		versiebron	luchtfoto
		type	BTR-landbouw
		soil_unit_	hVb
		ahn_05_dsm	-2.428999901000000
		ghg_mbgl	NULL
		glg_mbgl	0.8 - 1.0
		EERSTE_BOD	hVb
		EERSTE_GWT	11

Parcels form a natural multilooking "unit"

Multilooking & Contextual Data Integration

Key parameters:

- Land cover
- Soil type
- Water management zone ("Peilgebied")

Ergodicity and representativity vs. noise suppression

Loss of Lock in Spring/Summer

- InSAR observations of Dutch grasslands commonly show a complete loss of coherence in the spring and summer
- Practically speaking, this sustained longterm loss of coherence results in a cutting of the time series into disconnected segments

Typical Parcel Coherence Matrix (Sentinel-1)

Segmentation by Coherence

- We identify coherent time series segments where we are confident in the data quality
- Each segment is treated as an independent time series
- We can unwrap the time series with an acceptable level of error within the segment¹
 - ~90% success rate at $\gamma = 0.1$
 - ~98% success rate at $\gamma = 0.2$

¹ Probabilistic Estimation of InSAR Displacement Phase Guided by Contextual Information and Artificial Intelligence, IEEE Transactions on Geoscience and Remote Sensing. 2022 (In Review).

Partial Time Series Reconstruction

- We obtain an unwrapped time series for each segment
- Displacement is referenced to the first epoch
- How to reconnect the segments?

Multi-Parcel Estimation

- We can average multiple parcels together to retain coherence over time
- Enough similar parcels will remain coherent during the spring/summer period
- Similarity assessed on contextual data

Jan 2020 Apr 2020 Jul 2020 Oct 2020 Jan 2021 Apr 2021 Jul 2021

Multi-Parcel Estimation

- We (re-)multilook the parcels to obtain an average time series for the full group (right)
- Shift the individual segments according to the obtained mean displacement
- Two outputs:
 - Mean displacement time series of entire group
 - Per parcel time series reconstruction

21-Mar-2020

Coherent Mean
 Parcel Loss-of-Lock

Soil code: 'PvB' Grassland cover AHN -1.5m - -2.1m

Parcel

Coherent Mean Parcel Loss-of-Lock

Soil code: 'PvB' Grassland cover AHN -1.5m - -2.1m

mean

Coherent Mean Parcel Loss-of-Lock

Soil code: 'PvB' Grassland cover AHN -1.5m - -2.1m

Deformation per parcel

Coherent Mean
 Parcel Loss-of-Lock

Soil code: 'PvB' Grassland cover AHN -1.5m - -2.1m

Coherent Mean
 Parcel Loss-of-Lock

Soil code: 'PvB' Grassland cover AHN -1.5m – -2.1m

Conclusions

- Loss-of-lock cuts the InSAR time series into disconnected segments
- We detect these segments using the daisy-chain coherence
- Neighbouring points are used to fill in the gaps in the incoherent segments
- First accurate time series of surface motion of the Dutch peatlands!

Future Work

- SHP tests within parcels
- Additional contextual data: parcel shape to estimate water infiltration
- Weighted parcel averaging by number of pixels
- Additional spatial constraints
- Process longer time series

Extra Slides

Mixed PS/DS Processing Flow Diagram

Equivalent Number of Looks

