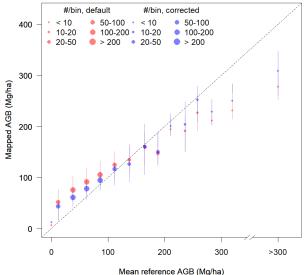

An exploratory assessment of the past-decade changes in above-ground biomass (ΔAGB) from four multi-temporal global products

Arnan Araza, Martin Herold, Sytze de Bruin, Philippe Ciais, David Gibbs, Nancy Harris, Pedro Rodriguez-Veiga, Maurizio Santoro, Hugh Brown, Zlatomir Dimitrov, Mariano Garcia, Mart-Jan Schelhaas, Adriane Esquivel Muelbert, Dmitry Shchepashchenko, Krzysztof Stere ´nczak, Natalia Malaga Duran, Karimon Nesha, Lars Hein, et al.

May 26, 2022



Progress on AGB map accuracy analysis

- Map accuracy assessments using independent reference data are necessary (CEOS, users)
- Model-based uncertainty framework for single map epochs have been developed
 - Plot2Map tool in R / CEOS MAAP platform https://github.com/arnanaraza/PlotToMap
- Options for the reduction of map systematic differences (bias) in high biomass regions (tropics)

AGB maps (default and bias-corrected)

Araza, A., de Bruin, S., Herold, M., Quegan, S., Labriere, N., Rodriguez-Veiga, P., ... & Lucas, R. (2022). A comprehensive framework for assessing the accuracy and uncertainty of global above-ground biomass maps. *Remote Sensing of Environment*, 272, 112917.

Current multidate / change global AGB maps

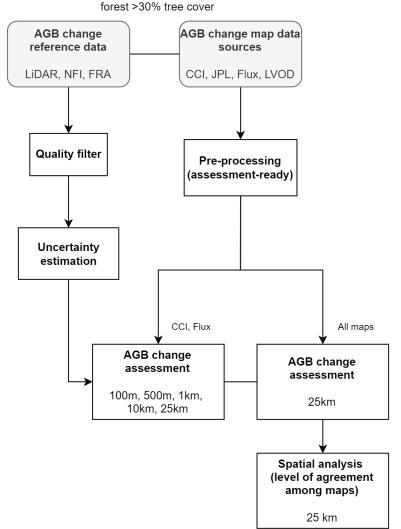
Different approaches are being used:

Multi-date, annual AGB (e.g., 2010, 2018) = ALOS PALSAR-based (100 m)

Annual time series AGB = MODIS / L-VOD (10-25 km)

AGB/carbon fluxes = Baseline AGB & loss-gain data

Maps	Spatial	Forest mask data	Pixel size	Temporal resolu-	RS and in situ data	Open ac-	Open Un-	Reference	Access
	scale			tion		cess (OA)	certainty		
							layer		
CCI	global	-	100 m	2010,2017,2018,	ALOS2-PALSAR2, Sentinel 1	Yes	Yes	Santoro	https://catalogue.ceda
Biomass				2020				and Cartus	
								(2019)	
WRI Flux	global	>30% tree cover	30 m	2000-2020	Baccini 30-m AGB, GFC data	Yes	No	Harris et al.	https://data.globalfore
model		from Global For-			and IPCC activity data			(2021)	
		est Change							
Saatchi TS	global	>30% tree cover	10 km	2010-2019	MODIS, ICESat, ALOS-	Yes	No	Xu et al.	https://zenodo.org/rec
		from Global For-			PALSAR			(2021)	
		est Change							
VOD TS	global	-	25 km	1988-2008	VOD	No	Yes	Liu et al.	-
								(2012)	
Baccini TS	pantropical	woody live vege-	250 m	2003-2014	MODIS, ICESat	No	No	Baccini	-
		tation						et al.	
								(2017)	
L-VOD	global	-	25 km	2010-2019	L-band VOD from SMOS,	No	No	?	kayrros.com
SMOS					GlobBiomass 2010				


Table 1: List of large scale map products of $\triangle AGB$ and their key details.

Objectives

(1) Compile several \triangle AGB reference data sources and assess their suitability in assessing the map products;

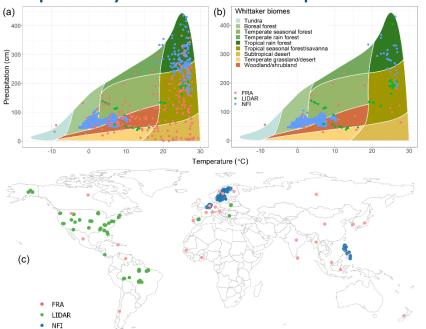
(2) Investigate the effect of spatial aggregation to the map assessments; and

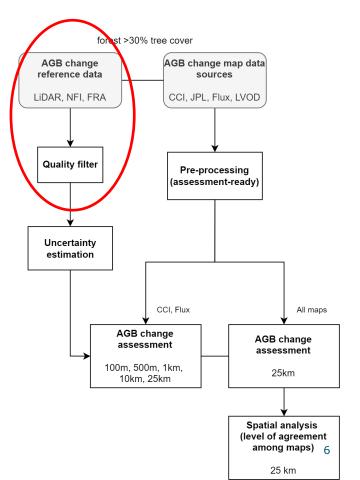
(3) Spatially assess whether map products agree or disagree on ΔAGB .

Pre-processing and comparisons of map and ref data

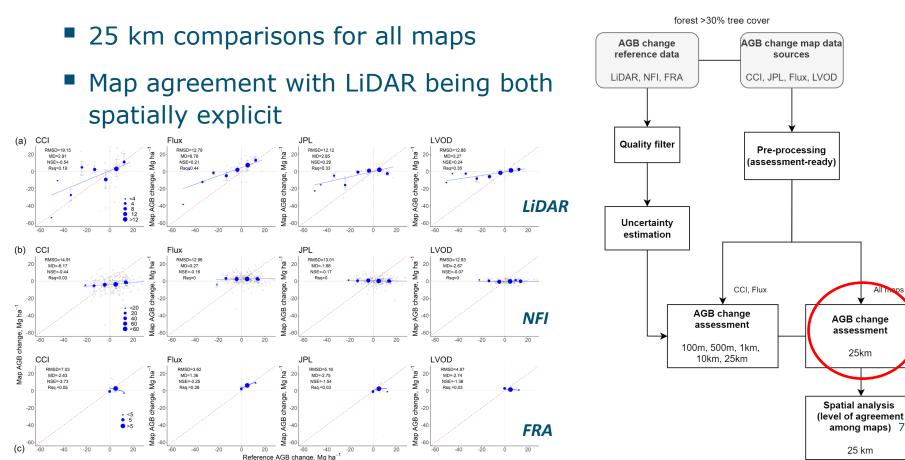
- **CCI-Biomass:** map differencing
- WRI Flux model: 2010 variables modified; AGC component only

https://github.com/arnanaraza/carbon-budget

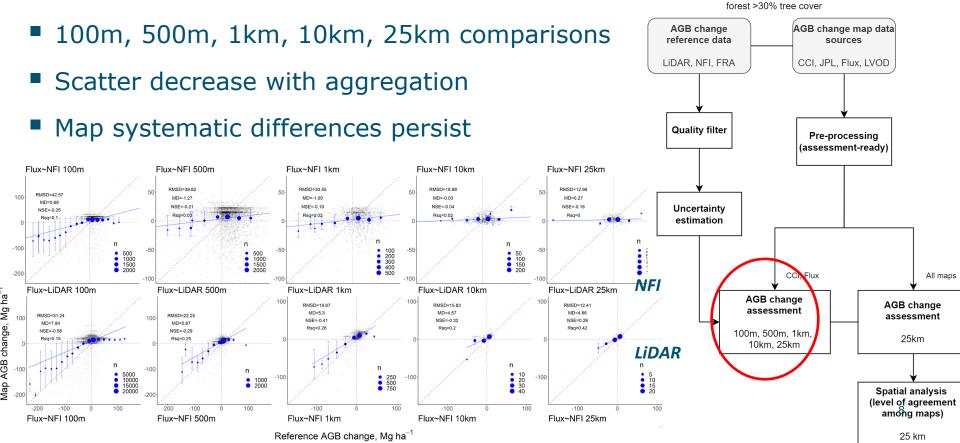

- JPL: average of 2009-2011 and 2018-2020
- LVOD already an improvement of previous LVOD; re-projected into WGS 84
- Aggregation: mean

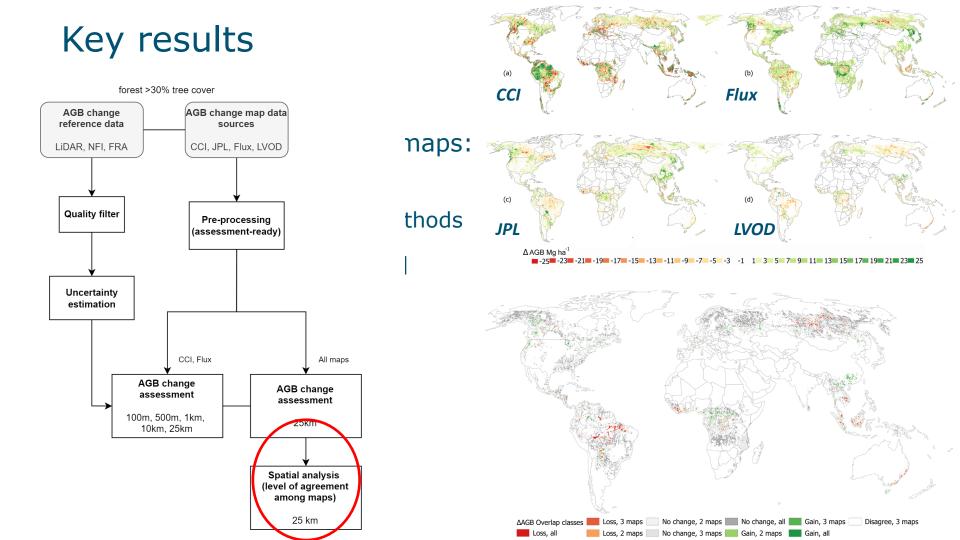

- Remeasured NFI plots removed old plots and those deforested after the 2nd epoch;
- Multi-date LiDAR removed missing values epoch and forest edge pixels;
- FAO FRA country data selected countries with repeated NFIs and with very good RS capacity & forest area changes

weighted mean (except FRA)


Availability and characteristics of reference data

- European and PH NFIs; (2) SLB, NEON, EU LiDAR maps; (3) FRA (high-capacity)
- Spatially clustered sample



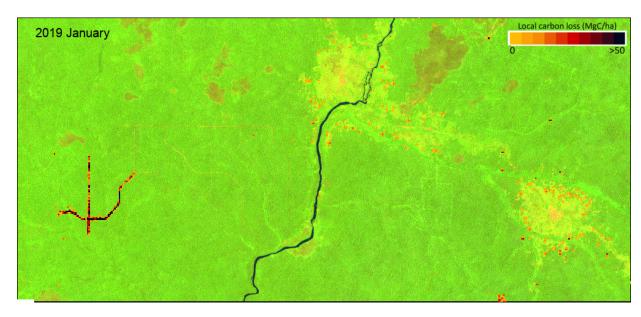

Key results (2019-2010 net $\triangle AGB$)

AIL

Key results (2019-2010 net $\triangle AGB$)

Remarks

- Progress in assessing global AGB maps using independent reference data
- Exploratory assessment of global ΔAGB using different reference data sources
- Comparisons at 25 km resolution: map-LiDAR agreement
- Aggregation effect: scatter decrease, inc. large changes, bias persist
- ΔAGB maps show some similar AGB loss/gain hotspots


Moving forward / Outlook

- Increasing $\triangle AGB$ maps ~ Increasing $\triangle AGB$ reference data(?)
- Combining different ΔAGB estimates from maps and reference to improve estimation for certain user needs
- Future options for spatially explicit carbon sources and sink estimation
- Global and national applications

Combining forest disturbance alerts and AGB estimates

- Carbon accounting (UN-SEEA framework)
- Local MRV of carbon

Csillik, O., Reiche, J., De Sy, V., Araza, A., & Herold, M. (2022). Rapid remote monitoring reveals spatial and temporal hotspots of carbon loss in Africa's rainforests. Nature *Communications Earth & Environment*, *3*(1), 1-8.

Thank you for your attention!

Maraming salamat sa pakikinig!

6 explore the potential of nature to improve the quality of life

