Super-resolution in EO: Best practices for performance and quality metrics

Julien MICHEL

2022.05.26

CESBIO, Université de Toulouse, CNES/CNRS/INRAe/IRD/UPS, Toulouse, FRANCE

https://xkcd.com/1719

Physics and signal processing are not dead (yet)

HR / VHR Optical imaging sensors in remote sensing

- Optics, integration time, etc \rightarrow low pass filter with spatial cut-off frequency f_c
- Detectors size \Rightarrow spatial sampling frequency f_e
- System described by frequency damping at $f_e/2$:
 - High MTF : crisp images, but aliasing
 - Low MTF : Well sampled, but blurry

Super-resolution or super-restoration?

- Efficient restoration techniques use sensor priors. Real data for users are far from the sensor \Rightarrow SISR is more agnostic.
- Networks trained on simulated data often fail IRL \Rightarrow Need for realistic datasets

Single image super-resolution explained

Dedicated to Claude Shannon and Harry Nyquist

Yosef Akhtman, May 27, 2022

Quality Metrics, option A : physically informed losses and metrics

$$L_{fidelity}(LR, SR) = |LR - \underbrace{LPF_{PSF}(SR)}_{Coarse SR} + 1 + H_{fidelity}(HR, SR) = |\underbrace{(HR - LPF_{PSF}(HR))}_{High freq. details of HR} - \underbrace{(SR - LPF_{PSF}(SR))}_{High freq. details of SR}$$

$$CARN trained with Smooth L1 Loss$$

ESBIO

J. Michel

Quality Metrics, option A : physically informed losses and metrics

$$LR_{fidelity}(LR, SR) = |LR - LPF_{PSF}(SR) + 1 | R_{fidelity}(HR, SR) = | (HR - LPF_{PSF}(HR)) - (SR - LPF_{PSF}(SR)) | 1$$
High freq. details of SR
CARN trained with $LR_{fidelity}$ and $HR_{fidelity}$

$$UR = 0$$

$$UR =$$

Super-resolution in EO

J. Michel

Quality Metrics, option A : physically informed losses and metrics

$$LR_{fidelity}(LR, SR) = |LR - \underbrace{LPF_{PSF}(SR) \downarrow_{2}}_{Coarse SR} | \mathbf{1} \quad HR_{fidelity}(HR, SR) = |\underbrace{(HR - LPF_{PSF}(HR))}_{High freq. details of HR} - \underbrace{(SR - LPF_{PSF}(SR))}_{High freq. details of SR} | \mathbf{1} \\ \mathbf{1}$$

CARN trained with Perceptual Loss (VGG) + Smooth L1 loss on simulated S2

Super-resolution in EO

Quality Metrics, option B : using standard metrics and stratifying gradients

- Low gradient magnitude pixels (homogeneous, low texture) outnumber high gradient magnitude pixels (edges, high texture)
- ullet \Rightarrow statistical measures (RMSE, MAE, PSNR ...) are biased toward low gradient magnitude pixels accuracy
- \Rightarrow poor measures of super-resolution performances (will favor low resolution fidelity)
- Idea : apply metrics separately on higest / lowest gradient magnitude stratas

J. Michel

Super Resolution in EO: Best practices for performance and quality metrics

Data for training: current practices, challenges, future pathways

Michal Kawulok^{1,2}

(☑) michal.kawulok@ieee.org

¹KP Labs, Gliwice, Poland ²Silesian University of Technology, Gliwice, Poland

- Data required to train super-resolution (SR) networks
 - pairs of high-resolution reference coupled with low-resolution observation
 - single-image SR: 1 LR image coupled with 1 HR image
 - multi-image SR: N LR images coupled with 1 HR image
 - an image composed of a single or multiple bands (for multi- or hyperspectral data)
- Data source
 - real HR and LR image(s) showing the same region of interest
 - LR image(s) simulated from the HR image

- Data required to train super-resolution (SR) networks
 - pairs of high-resolution reference coupled with low-resolution observation
 - single-image SR: 1 LR image coupled with 1 HR image
 - multi-image SR: N LR images coupled with 1 HR image
 - an image composed of a single or multiple bands (for multi- or hyperspectral data)
- Data source
 - real HR and LR image(s) showing the same region of interest
 - LR image(s) simulated from the HR image

- Data required to train super-resolution (SR) networks
 - pairs of high-resolution reference coupled with low-resolution observation
 - $\bullet\,$ single-image SR: 1 LR image coupled with 1 HR image
 - multi-image SR: N LR images coupled with 1 HR image
 - an image composed of a single or multiple bands (for multi- or hyperspectral data)
- Data source
 - real HR and LR image(s) showing the same region of interest
 - LR image(s) simulated from the HR image

- Data required to train super-resolution (SR) networks
 - pairs of high-resolution reference coupled with low-resolution observation
 - $\bullet\,$ single-image SR: 1 LR image coupled with 1 HR image
 - multi-image SR: N LR images coupled with 1 HR image
 - an image composed of a single or multiple bands (for multi- or hyperspectral data)
- Data source
 - real HR and LR image(s) showing the same region of interest
 - LR image(s) simulated from the HR image

Simulated LR data

- easy to obtain
- may not reflect the real LR-HR relation
- trained models produce artifacts when applied to real images

• Real LR-HR image pairs

- acquired using a different sensor of lower resolution
- difficult and costly to collect
- models suitable for operating conditions
- example: Proba-V dataset
- Potential solution: realistic LR image simulation

- Simulated LR data
 - easy to obtain
 - may not reflect the real LR-HR relation
 - trained models produce artifacts when applied to real images
- Real LR-HR image pairs
 - acquired using a different sensor of lower resolution
 - difficult and costly to collect
 - models suitable for operating conditions
 - example: Proba-V dataset
- Potential solution: realistic LR image simulation

- Simulated LR data
 - easy to obtain
 - may not reflect the real LR-HR relation
 - trained models produce artifacts when applied to real images
- Real LR-HR image pairs
 - acquired using a different sensor of lower resolution
 - difficult and costly to collect
 - models suitable for operating conditions
 - example: Proba-V dataset
- Potential solution: realistic LR image simulation

- Simulated LR data
 - easy to obtain
 - may not reflect the real LR-HR relation
 - trained models produce artifacts when applied to real images
- Real LR-HR image pairs
 - acquired using a different sensor of lower resolution
 - difficult and costly to collect
 - models suitable for operating conditions
 - example: Proba-V dataset
- Potential solution: realistic LR image simulation

- Simulated LR data
 - easy to obtain
 - may not reflect the real LR-HR relation
 - trained models produce artifacts when applied to real images
- Real LR-HR image pairs
 - acquired using a different sensor of lower resolution
 - difficult and costly to collect
 - models suitable for operating conditions
 - example: Proba-V dataset

• Potential solution: realistic LR image simulation

- Simulated LR data
 - easy to obtain
 - may not reflect the real LR-HR relation
 - trained models produce artifacts when applied to real images
- Real LR-HR image pairs
 - acquired using a different sensor of lower resolution
 - difficult and costly to collect
 - models suitable for operating conditions
 - example: Proba-V dataset

• Potential solution: realistic LR image simulation

- Simulated LR data
 - easy to obtain
 - may not reflect the real LR-HR relation
 - trained models produce artifacts when applied to real images
- Real LR-HR image pairs
 - acquired using a different sensor of lower resolution
 - difficult and costly to collect
 - models suitable for operating conditions
 - example: Proba-V dataset
- Potential solution: realistic LR image simulation

Source: T. Tarasiewicz, J. Nalepa, M. Kawulok: Semi-simulated training data for multi-image super-resolution, IEEE IGARSS 2022

Source: T. Tarasiewicz, J. Nalepa, M. Kawulok: Semi-simulated training data for multi-image super-resolution, IEEE IGARSS 2022

M. Kawulok Data for training: current practices, challenges, future pathways, Living Planet Symposium 2022

Data augmentation for LR image simulation

Source: M. Ziaja, J. Nalepa, M. Kawulok: Data augmentation for multi-image super-resolution, IEEE IGARSS 2022

M. Kawulok Data for training: current practices, challenges, future pathways, Living Planet Symposium 2022

Thank you for your attention! Data for training: current practices, challenges, future pathways

Michal Kawulok^{1,2}

(🖂) michal.kawulok@ieee.org

¹KP Labs, Gliwice, Poland ²Silesian University of Technology, Gliwice, Poland

M. Kawulok Data for training: current practices, challenges, future pathways, Living Planet Symposium 2022

Shameless advertisement : the SEN2VENµS Dataset (132k patches)

• Open Dataset on Zenodo : https://zenodo.org/record/6514159

• 132 955 patches, 29 locations, 8 Sentinel-2 bands, from 10m/20m to 5m (VEN μ S resolution) Michel, J.; Vinasco-Salinas, J.; Inglada, J.; Hagolle, O. SEN2VEN μ S, a Dataset for the Training of Sentinel-2 Super-Resolution Algorithms.

Preprints 2022, 2022050230 (doi : 10.20944/preprints202205.0230.v1). Submitted to MDPI Data.

Quality indices & xAI for trusted and accountable SR

Several ways to assess and viz SR quality

- 1. Uncertainty maps for xAI [Kendall 2017]
 - show what the model doesn't know \rightarrow natural fit to ill-posedness of SR
- 2. Perceptual metrics [Johnson 2016, Ledig 2017, Laparra 2010, Talens 2010]
 - traditionally applied on SR (or PAN) products [Wu 2017]
 - in space or spectrum, metric-wise or perceptual-guided
- 3. Saliency rooted on information & uncertainty [Zhang 2017]
 - Now: perceptual on output \rightarrow a statistical approach could scrutinize any layer
- 4. Distortions & hallucinations
 - Now: tendency evaluated at the model level \rightarrow Future: layer level
 - study latent representations; what their filters do; their distribution; activation under different stimuli
- 5. Attention mechanisms [Vaswani 2017, Dosovitskiy 2020]
 - alternatives to standard extraction and metric analysis
 - they study the input-latent-output chain jointly

References

[Arrieta 2020]

Arrieta et al., Explainable Artificial Intelligence (xAI): Concepts, taxonomies, opportunities and challenges toward responsible AI, Information Fusion, 58, 82-115, (2020).

[Campos-Taberner 2020]

Campos-Taberner et al., Understanding deep learning in land use classification from Sentinel-2 time series. Scientific Reports 12 (2020).

[Tuia 2021]

Tuia, et al., Towards a Collective Agenda on AI for Earth Science Data Analysis. IEEE Geoscience and Remote Sensing Magazine (2021).

[Samek 2021]

Samek, et al., Explaining deep neural networks and beyond: A review of methods and applications. Proceedings of the IEEE, 109(3), 247-278 (2021).

[Zhang 2017]

Zhang, et al., Learning uncertain convolutional features for accurate saliency detection. ICCV 2017.