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Physics and signal processing are not dead (yet)

HR / VHR Optical imaging sensors in remote sensing . i
Super-resolution or super-restoration ?

e Optics, integration time, etc ... = low pass filter

. . e Efficient restoration techniques use sensor priors.
with spatial cut-off frequency 7.

Real data for users are far from the sensor = SISR

e Detectors size = spatial sampling frequency fe is more agnostic.
i fi i fe/2 : . . .
¢ SYSten_] described Py .requency dar.npllng at fe/ o Networks trained on simulated data often fail IRL
e High MTF : crisp images, but aliasing — Need for realistic datasets

e Low MTF : Well sampled, but blurry
Example of Sentinel2 10m Red band (MTF=0.223)

—— Modulation Transfer Function
--- Fe/2 (-6 dB)
--- Fc? (-100 dB)
8 Well sampled, aliasing from higher frequencies
= Damped and aliased
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Single image super-resolution explained
Dedicated to Claude Shannon and Harry Nyquist

Yosef Akhtman, May 27, 2022
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Quality Metrics, option A : physically informed losses and metrics

LRfidelity (LR, SR) = |LR — LPFpsr(SR) L2 11 HRfigelie, (HR, SR) = | (MR — LPFpgp(HR)) — (SR — LPFpgp(SR)) |1
—
Coarse SR High freq. details of HR  High freq. details of SR

CARN trained with Smooth L1 Loss

J. Michel Super-resolution in EO

2022.05.26



Quality Metrics, option A : physically informed losses and metrics

LRfigelity (LR, SR) = |LR — LPFpsp(SR) 12 |1 HRfigelity (HR, SR) = | (HR — LPFpgg(HR))  — (SR — LPFpgp(SR)) |1
—_——
Coarse SR High freq. details of HR  High freq. details of SR

CARN trained with LRﬁde[,'ty and HRﬁde[,‘ty

LR fidelit 52@5m (CARN SISR) VNS@5m (ref) R fideli _ SR HF details
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Quality Metrics, option A : physically informed losses and metrics

LRfidelity (LR, SR) = |LR — LPFpsg(SR) 12 |1 HRfigelity (HR, SR) = |  (HR — LPFpsp(HR)) — (SR — LPFpsp(SR)) [
—
Coarse SR High freq. details of HR  High freq. details of SR

CARN trained with Perceptual Loss (VGG) 4+ Smooth L1 loss on simulated S2

52@10m (bicucic) R fde‘ 52@5m (CARN SISR) VNS@5m (ref) HR fideli SISR HF details 0 REF HF details
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Quality Metrics, option B : using standard metrics and stratifying gradients

e Low gradient magnitude pixels (homogeneous, low texture) outnumber high gradient magnitude pixels
(edges, high texture)

e = statistical measures (RMSE, MAE, PSNR ...) are biased toward low gradient magnitude pixels accuracy
e = poor measures of super-resolution performances (will favor low resolution fidelity)

o Idea : apply metrics separately on higest / lowest gradient magnitude stratas

50% pixels with lowest gradient 25% pixels with highest gradient 50% pixels with lowest gradient 25% pixels with highest gradient
= 5 7 2 >3 S 2 = Rk
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Data for training super-resolution networks

LR-HR pair

e Data required to train super-resolution (SR) networks
e pairs of high-resolution reference coupled with low-resolution
observation
e single-image SR: 1 LR image coupled with 1 HR image
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Data for training super-resolution networks

LR-HR pair
e Data required to train super-resolution (SR) networks (multi-image)
e pairs of high-resolution reference coupled with low-resolution
observation 5

e single-image SR: 1 LR image coupled with 1 HR image
e multi-image SR: N LR images coupled with 1 HR image
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Data for training super-resolution networks

LR-HR pair
e Data required to train super-resolution (SR) networks (multi-image)
e pairs of high-resolution reference coupled with low-resolution
observation 5

e single-image SR: 1 LR image coupled with 1 HR image

e multi-image SR: N LR images coupled with 1 HR image

e an image composed of a single or multiple bands (for multi- or
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Data for training super-resolution networks

LR-HR pair
e Data required to train super-resolution (SR) networks (multi-image)
e pairs of high-resolution reference coupled with low-resolution
observation 5

e single-image SR: 1 LR image coupled with 1 HR image

e multi-image SR: N LR images coupled with 1 HR image

e an image composed of a single or multiple bands (for multi- or
hyperspectral data)

@ Data source

o real HR and LR image(s) showing the same region of interest
o LR image(s) simulated from the HR image
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Data for training super-resolution networks

@ Simulated LR data

e easy to obtain

e may not reflect the real LR-HR relation

e trained models produce artifacts when applied to real
images
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Data for training super-resolution networks

@ Simulated LR data

e easy to obtain
e may not reflect the real LR-HR relation

e trained models produce artifacts when applied to real _
images
(—
LR’ l
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Data for training super-resolution networks

@ Simulated LR data
e easy to obtain
e may not reflect the real LR-HR relation
e trained models produce artifacts when applied to real
images
@ Real LR-HR image pairs

e acquired using a different sensor of lower resolution
e difficult and costly to collect

e models suitable for operating conditions

e example: Proba-V dataset
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Data for training super-resolution networks

@ Simulated LR data
e easy to obtain
e may not reflect the real LR-HR relation
e trained models produce artifacts when applied to real
images
@ Real LR-HR image pairs
e acquired using a different sensor of lower resolution
e difficult and costly to collect
e models suitable for operating conditions
e example: Proba-V dataset

@ Potential solution: realistic LR image simulation
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Semi-simulated data for multi-image SR

Simulated LR images Semi-simulated LR images

Original image Original images
LR1 LR2 LRN

Source: T. Tarasiewicz, J. Nalepa, M. Kawulok: Semi-simulated training data for multi-image
super-resolution, |IEEE IGARSS 2022

LR1 LR2 LRN



Semi-simulated data for multi-image SR

Simulated LR images Semi-simulated LR images

Original image Original images

Simulated sub-pixel shifts Simulated
and downsampling 1 downsampling l
"4 N2 hY; N2

LRy LR, LRy LR, LRy LRy

Source: T. Tarasiewicz, J. Nalepa, M. Kawulok: Semi-simulated training data for multi-image
super-resolution, |IEEE IGARSS 2022
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Data augmentation for LR image simulation
Input images
A MidasNet MidasNet
», X training model
LR images Shifts :
distribution

1
co-registration
railin :
] T Modify and
= Apply shift: ¢
@ >
Shifted R images -7 i%g?rf;;g

17
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1

HR image ¢. -

Source: M. Ziaja, J. Nalepa, M. Kawulok: Data augmentation for multi-image super-resolution, IEEE
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Thank you for your attention!
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Shameless advertisement : the SEN2VENuS Dataset (132k patches)

e Open Dataset on Zenodo : https://zenodo.org/record/6514159
e 132 955 patches, 29 locations, 8 Sentinel-2 bands, from 10m/20m to 5m (VENuS resolution)

Michel, J.; Vinasco-Salinas, J.; Inglada, J.; Hagolle, O. SEN2VENpS, a Dataset for the Training

of Sentinel-2 Super-Resolution Algorithms.

Preprints 2022, 2022050230 (doi : 10.20944/preprints202205.0230.vl). Submitted to MDPI Data.
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Quality indices & xAl for trusted and accountable SR

Several ways to assess and viz SR quality

1.

Uncertainty maps for xAl [Kendall 2017/]
e show what the model doesn't know — natural fit to ill-posedness of SR

Perceptual metrics [Johnson 2016, Ledig 201/, Laparra 2010, Talens 2010]
e traditionally applied on SR (or PAN) products [Wu 2017]

o inspace or spectrum, metric-wise or perceptual-guided

Saliency - rooted on information & uncertainty [Zhang 2017]
e Now: perceptual on output — o statistical approach could scrutinize any layer

Distortions & hallucinations
e Now: tendency evaluated ot the model level — Future: layer level
e study lotent representations; what their filters do; their distribution; activation under different stimuli

Attention mechanisms [Voswani 201/, Dosovitskiy 2020]
e alternatives to standard extraction and metric analysis
e they study the input-latent-output chain jointly
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