

Creating historical time series of satellite observed inundation for risk transfer applications in Bangladesh

Jonathan Giezendanner, Mitchell Thomas, Max Mauerman, Upmanu Lall, Arifuzzaman Bhuyan, Mehadi Hasan, A.K.M. Saiful Islam, **Beth Tellman**

jgiezendanner@arizona.edu Twitter: @JoGiezi

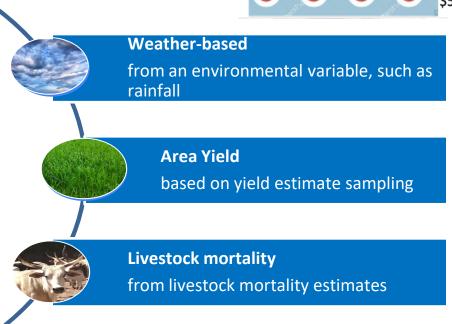
Understanding flood risk in human altered landscapes from cities to farms: inferences from satellites and machine learning

• 15% of flood losses absorbed by agricultural sector (FAO 2015)

• Asia lost 48 billion USD in agricultural production from 1980-2013 (60% due to floods) (FAO 2015)

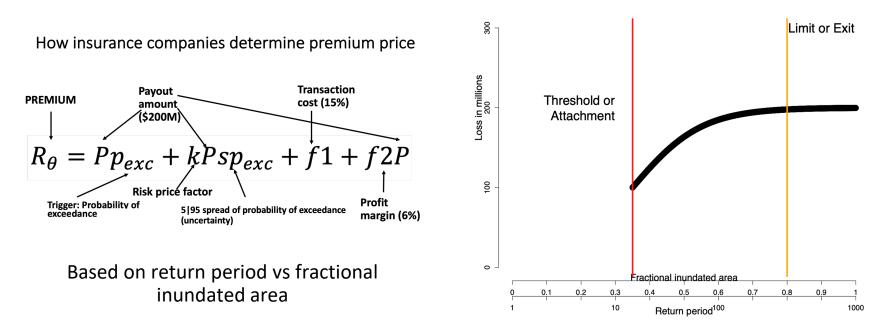
• Insurance can support farmers' sustainable development (Benami et al 2021)

<1% insurance penetration in Bangladesh!

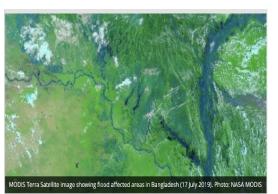

Interpress News Service: Mintu Deshwara/ Sheikh Nasir

Bangladesh: world's first satellite based agricultural flood index insurance

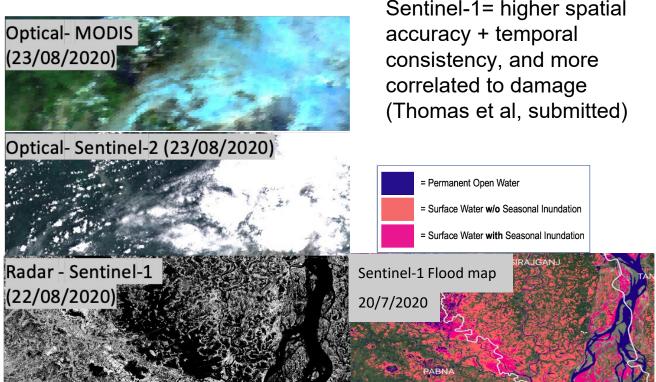
Index Based Insurance



- Payout based on measurable proxy for losses
- Payout issued when pre-defined threshold is reached
- Interesting in remote areas, generates cheap premiums, less moral hazard


For Floods: based on Return Period vs Fractional Flooded Area estimates

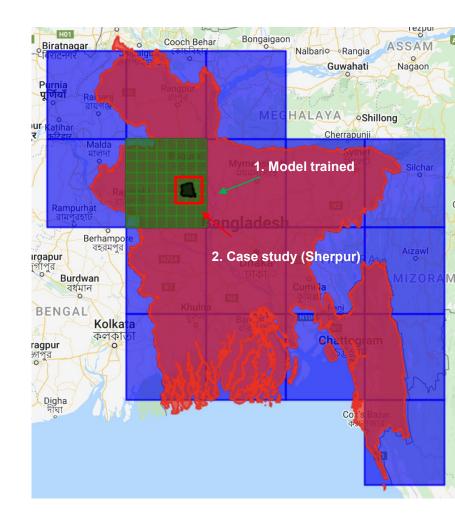
Insurance premium price based on return period estimates



Tellman et al, 2022

Requires accurate historical estimate of yearly maximum flood extend (capture peaks) Best satellites for flood mapping start ~2017 (Sentinel-1) but insurance requires a >15 year time series to establish contracts

GREEN DELTA

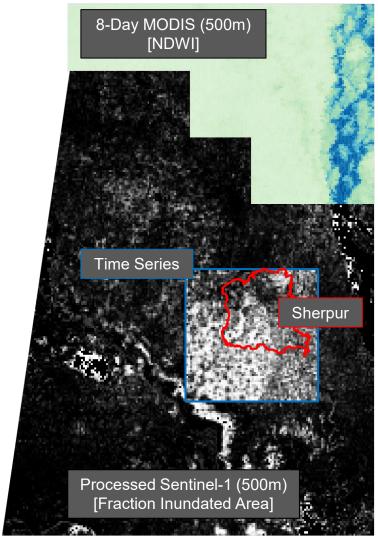

Goal: create historical (20+ years) time series of flooded areas over Bangladesh for return period estimates

Methods:

- Create a Fusion algorithm (Random Forest) to estimate fraction of flooded area for each MODIS pixel
- Sentinel-1 data (2017 2021) to generate weak labels (Thomas et al., submitted)
- Infer time series based on MODIS historical data (2001 – 2021).

Regions of interest:

- 1. Train on large region
- 2. Discuss results on Sherpur


Data

Fraction Inundated Area Estimate:

- Sentinel-1 (2017-2021, 10m.)
- Thresholding algorithm (Thomas et al., submitted), binary map at 10m resolution
- Calculate fraction of inundated area ([0,1]) for each MODIS pixel at 500m resolution

Input features:

- 8-Day MODIS composite image at 500m resolution
- Elevation (FABDEM)

Fraction Inundated Area Estimates

Sentinel-1 rapid and automated flood detection algorithm (Thomas et al, submitted)

- Measure Z-score statistical in radar backscatter during a flood compared to a historical dry baseline
- Computes individual thresholds for VV and VH bands in IW mode
- Processes Ascending and Descending orbit passes separately
- Apply additional backscatter threshold and spatial smoothing

Algorithm outperforms MODIS based algorithm (Islam et al. 2010)

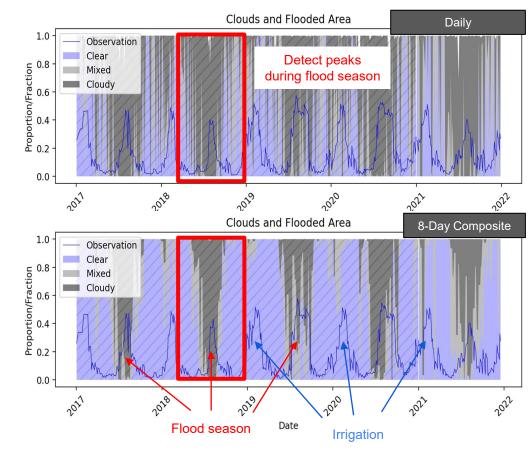
Mean 12 10 $\mu = 0.752$ 8 Frequency 2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Spearman's Correlation MODIS (Islam et al. 2010) Mean 12 10 $\mu = 0.568$ Frequency 8 6 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Thomas et al., Submitted

From Thomas et al., Submitted

Spearman's Correlation

MODIS Data – 8 Days Composite


MODIS Cloud Cover compared to Sentinel-1 Weak Labels

Overarching goal:

- Detect inundation peaks during flood season
- Ideally use daily MODIS data to detect flood dynamics as close as possible
- In practice: cloud cover during flood season too strong

Decision:

Use MODIS 8-Days Composite

Random Forest Model	Feature	Importance
	MODIS Band 5	0.35
Data:	NDWI	0.17
 12'072'405 total valid (Sentinel-1 overlap with MODIS) data points, 	MODIS Band 6	0.16
spread over 65'536 spatial pixels and 5 years	NDVI	0.12
Feature Selection:	B1 / B2	0.11
 MODIS bands 5 and 6 Ratio of MODIS band 1 over 2 MODIS based NDWI and NDVI Elevation (FAB DEM) Train 	Elevation	0.07
		Test
Training:		
 Trained on whole year (not only flood season), to improve water detection 		
 Season), to improve water detection Cross validation: Train on 4 years, leave one year out Iterate over all 5 years 	M had had	Mar March
2011 2018 2019	2020 202	* 2022

Date

Results: Aggregated over Grid

Cross-validation:

- Statistics consistent throughout years Fit:
- Overestimation of valleys (dry season)

Training

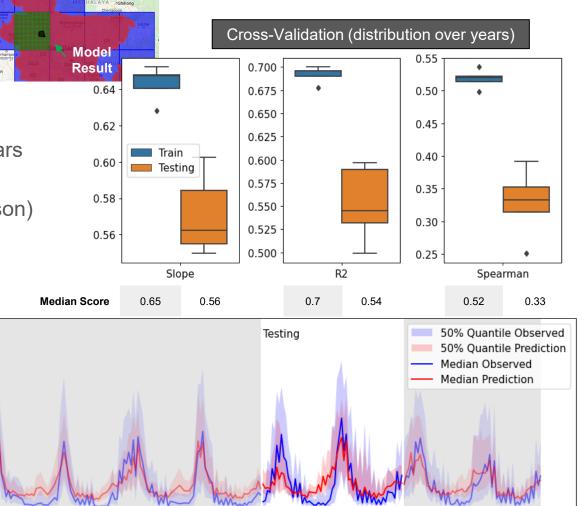
- Not all peaks captured for test data
- Flood season peak captured, but underestimated

of Flooded MODIS Pixel

Fraction 5.0

Single Year Test on 2020 0.8

0.6


0.4

0.0

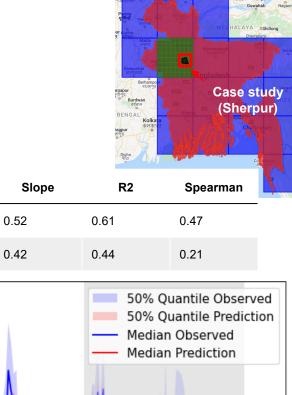
2017

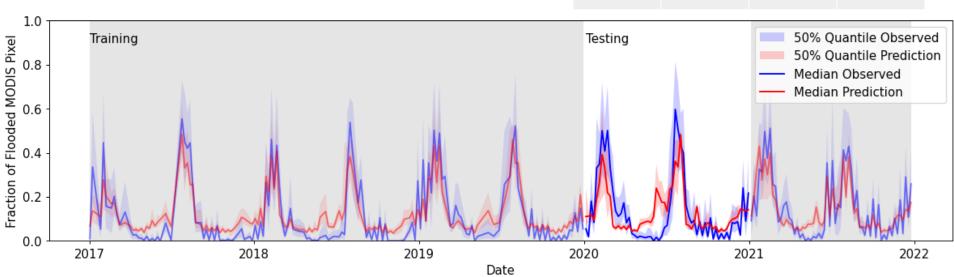
2018

2019

2020

Date

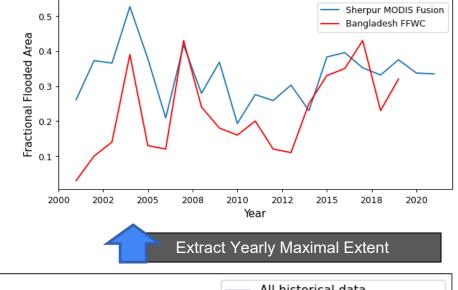

2021

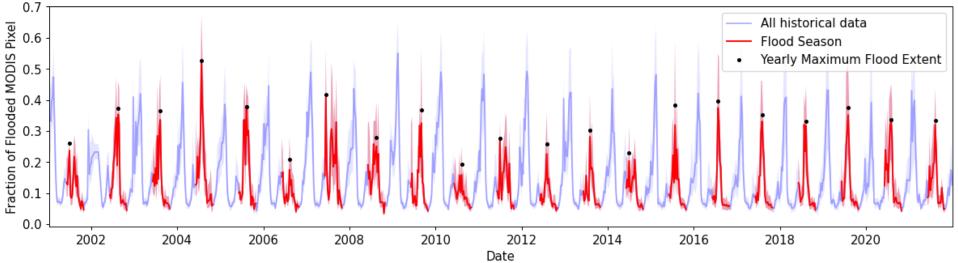

2022

Results: case study

Use case: aggregate data at administrative level (Upazila)

- Focus on Sherpur
- Flood season peak captured, but underestimated

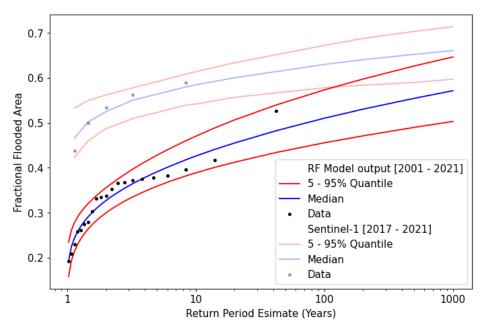

Set


Train

Test

Historical Inference (Sherpur)

- Infer time series of fraction of flooded area based on MODIS Fusion algorithm (20 years)
- Extract yearly maximum extent
 - Compare to Bangladesh Flood Forecasting and Warning Center (FFWC) model (coupled hydrologic - rainfall Mike 11 model) (Tellman et al. 2022), 0.27 Spearman



Return Period Estimates (Sherpur)

Return period estimates for Fractional Flooded Area using Beta-2 distribution (Tellman et al., 2022):

- Strong difference for short return periods between 4-years Sentinel-1 estimates and MODIS historical data
- Sentinel-1 series biased by short time series
- MODIS fusion algorithm, more realistic estimate, but underestimates flood peaks
- Real estimate in-between both distributions

Conclusions and Outlook

Project is at its very beginning!

- Promising results!
- Results show a more realistic return period estimate using this historical time series compared to the short term Sentinel-1 observation
- Greatly impacts triggers for parametric insurance and computation of premiums
- Difficulty to predict peaks exacerbated by heavy cloud cover

Data:

- Given the selected MODIS product (8-Days composite), goal is to generate return period estimates with model, but insurance trigger should be done with Sentinel-1 (better model quality)
- If single day MODIS were to be usable, and high model quality, trigger on Fusion algorithm could be considered given higher temporal resolution and probability of capturing flood peak.

Next steps:

- Local validation of flood extends
- Spatial Cross-validation
- Country-scale model
- Deep Learning algorithm to increase performance with presence of clouds

Thank you for your attention!

jgiezendanner@arizona.edu Twitter: @JoGiezi

Reference: **Tellman and et al**, *Earth's Future*, Regional Index Insurance using Satellite-based Fractional Flooded Area, 2022

This work is undertaken as part of the NASA New (Early Career) Investigators (NIP) Program (80NSSC21K1044)