

living planet symposium 23-27 May 2022

TAKING THE PULSE OF OUR PLANET FROM SPACE

EUMETSAT CECMWF

Towards a synergistic use of Sentinels 2, 3 and 5P for SIF based estimates of Gross Primary Productivity at 1 km

Johannes Gensheimer¹, Markus Reichstein¹, Luis Guanter², Zayd Hamdi¹, and Gregory Duveiller¹

¹Max Planck Institute for Biogeochemistry, Jena, Germany; ²Universitat Politècnica de València (UPV), Spain

(อบุรคค 🔤

ESA UNCLASSIFIED - For ESA Official Use Only

25.05.2022

→ THE EUROPEAN SPACE AGENCY

Johannes Gensheimer

DLR

living planet BONN symposium 2022

TAKING THE PULSE OF OUR PLANET FROM SPACE

EUMETSAT CECMWF

Towards a synergistic use of Sentinels 2, 3 and 5P for SIF based estimates of Gross Primary Productivity at 1 km

Johannes Gensheimer¹, Markus Reichstein¹, Luis Guanter², Zayd Hamdi¹, and Gregory Duveiller¹

Within the ESA

Sen4GPP project

¹Max Planck Institute for Biogeochemistry, Jena, Germany; ²Universitat Politècnica de València (UPV), Spain

(อบุรคค 🔤

ESA UNCLASSIFIED - For ESA Official Use Only

25.05.2022

→ THE EUROPEAN SPACE AGENCY

· e esa

Johannes Gensheimer

DLR

Max Planck Institute for Biogeochemistry

Max Planck Institute

Max Planck Institute

for Biogeochemistry

Figure from Magney, T. S., Barnes, M. L., & Yang, X. (2020). On the covariation of chlorophyll fluorescence and photosynthesis across scales. *Geophysical Research Letters*, 47(23), e2020GL091098.

Ground-based GPP measurements

Warm Winter 2020 release of eddy covariance flux sites

Johannes Gensheimer

Ground-based GPP measurements: Data cleaning

Warm Winter 2020 release of eddy covariance flux sites

Johannes Gensheimer

Ground-based GPP measurements

Johannes Gensheimer

Ground-based GPP measurements

Measuring carbon fluxes at ground-based stations with eddy covariance technique Warm Winter 2020 release of eddy covariance flux sites

Johannes Gensheimer

Influencing footprint of eddy covariance measurements

US-Syv

0.0

Eddy covariance footprint

- In the range of hundreds of meters (or above)
- Dependent on conditions like e.g. weather, tower height, ...

Figure from Chu et al. (2021). Representativeness of Eddy-Covariance flux footprints for areas surrounding AmeriFlux sites. Agricultural and Forest Meteorology, 301, 108350.

Estimating GPP from SIF

Warm Winter 2020 release of eddy covariance flux sites

Johannes Gensheimer

Estimating GPP from SIF

Johannes Gensheimer

Remote Sensing SIF over tower locations

Warm Winter 2020 release of eddy covariance flux sites

Johannes Gensheimer

Spatial heterogeneity in 0.05° pixel

Warm Winter 2020 release of eddy covariance flux sites

Johannes Gensheimer

Downscaling TROPOMI SIF to 1 km

Duveiller et al. (2020) Light use efficiency (LUE) calibration

 $SIF = f(V) \cdot f(W) \cdot f(T)$

the function is calibrated with a moving window of low-resolution samples

<u>Turner et al. (2020)</u> Distributing SIF photons based on greenness/vegetation index

$$SIF_{i,j} = \overline{SIF} \cdot \frac{V_{i,j}}{\overline{V}}$$

TROPOMI footprints are weighted by vegetation index and oversampled over 16 day moving window

V: vegetation index, W: water index, T: temperature proxy

Downscaling TROPOMI SIF to 1 km

Duveiller et al. (2020) Light use efficiency (LUE) calibration

 $SIF = f(NIRv) \cdot f(NDWI) \cdot f(LST)$

the function is calibrated with a moving window of low-resolution samples

<u>Turner et al. (2020)</u> Distributing SIF photons based on greenness/vegetation index

$$SIF_{i,j} = \overline{SIF} \cdot \frac{NIRv_{i,j}}{\overline{NIRv}}$$

TROPOMI footprints are weighted by vegetation index and oversampled over 16 day moving window

Original studies used MODIS. Turner et al. at daily resolution with 16-day moving window oversampling.

Downscaling TROPOMI SIF to 1 km

Duveiller et al. (2020) Light use efficiency (LUE) calibration	<u>Turner et al. (2020)</u> Distributing SIF photons based on greenness/vegetation index	Gensheimer et al. (2022) Deep Learning superresolution
$SIF = f(OGVI) \cdot f(LST)$	$SIF_{i,j} = \overline{SIF} \cdot \frac{OGVI_{i,j}}{\overline{OGVI}}$	
the function is calibrated with a moving window of low-resolution samples Data used	TROPOMI footprints are weighted by vegetation index and oversampled over 16 day moving window	SF at 0.05*
Sentinel 5P: SIF Sentinel 3: OGVI, LST day	Sentinel 5P: SIF Sentinel 3: OGVI	Sentinel 5P: SIF Sentinel 3: OGVI, OTCI, LST day, SZA
	→ Now at 8-day resolution – influences oversampling	
Johannes Gensheimer	May 25, 2022	

Visual example of the effect of downscaling: ES-LM2

Max Planck Institute for Biogeochemistry

5.82°W 5.805°W 5.79°W 5.775°W 5.76°W 5.745°W 5.73°W

Johannes Gensheimer

May 25, 2022

Visual example of the effect of downscaling: FR-Gri

Max Planck Institute for Biogeochemistry

Johannes Gensheimer

May 25, 2022

65 sites from Warm Winter 2020 dataset release over Europe.

TROPOMI SIF vs. EC GPP (PFT dependent)

Differences between methods

Johannes Gensheimer

Examplary sites: ES-LM2

Johannes Gensheimer

Examplary sites: FR-Gri

Johannes Gensheimer

Johannes Gensheimer

FR-Gri – Sentinel 2 NDVI

Johannes Gensheimer

FR-Gri – Sentinel 2 NDVI

Johannes Gensheimer

May 25, 2022

FR-Gri – Sentinel 2 NDVI

Johannes Gensheimer

May 25, 2022

Conclusion

General Results

- Applying weighted gridding increases the correlation of SIF from TROPOMI to GPP.
- Downscaling methods are benchmarked they further improve the correlation to GPP.
- Huge spread in the correlation of SIF to GPP between tower sites.

Perspectives

- We need to understand the variability in correlation between sites.
 - Account for heterogeneity with Sentinel 2?
- Extrapolate the knowledge we get from towers to the area of Europe.

Downscaling Methods

Duveiller et al., 2020 Turner et al., 2020 Gensheimer et al., 2022

Johannes Gensheimer