

SWARMVIP SWARM SPACE WEATHER VARIABILITY OF IONOSPHERIC PLASMA

Swarm – VIP: Variability of Ionospheric Plasma studied and modelled based on data from the Swarm satellites

Wojciech J. Miloch⁽¹⁾, Lucilla Alfonsi⁽²⁾, Luca Spogli^(2,3), Jaroslav Urbář⁽²⁾, Claudio Cesaroni⁽²⁾, Antonio Cicone⁽⁴⁾, Alan G. Wood⁽⁵⁾, James Rawlings⁽⁶⁾, Golnaz Sahtahmassebi⁽⁶⁾, Lasse B.N. Clausen⁽¹⁾, Yaqi Jin⁽¹⁾, Per Høeg⁽¹⁾, Ewa Gierlach⁽⁷⁾, Jan Miedzik⁽⁷⁾

> (1) University of Oslo, Norway (2) Istituto Nazionale di Geofisica e Vulcanologia, Italy (3) SpacEarth Technology, Italy (4) Università degli Studi dell'Aquila, Italy (5) University of Birmingham, UK (6) Nottingham Trent University, UK (7) GMV Innovating Solutions Sp. z o.o., Poland

UiO: University of Oslo NOTTINGHAM[®] UNIVERSITY OF

Swarm + Ionosphere Contract no: 4000130562/20/I-DT

BIRMINGHAM

Swarm-VIP: Variability of Ionospheric Plasma

Context:

Space Weather

Ionospheric variability and irregularities are a part of the space weather system

Swarm-VIP: Variability of Ionospheric Plasma

We address the following science challenges within the 4DIonosphere:

- Understanding climate/weather in the ionosphere (Quiescent Space Climate/Weather).
- Understanding extreme weather in the ionosphere (Extreme Weather in Space).
- Physics of ionospheric perturbations and small-scale variability.

Based on Swarm L1 and L2 datasets, and with supporting external relevant datasets, we established a new Swarm-based semi-empiric ionospheric model.

All three Swarm satellites are equipped with a set of six instruments: Absolute Scalar Magnetometer (ASM), Vector Field Magnetometer (VFM), Star Tracker (STR), Electric Field Instrument (EFI), GPS Receiver (GPSR), Accelerometer (ACC).

Swarm-VIP: Variability of Ionospheric Plasma

Swarm can help addressing the outstanding questions:

- What is the characteristics of the space weather/climate in the ionosphere and the extreme events over time?
- What is the physics behind ionospheric perturbations?
- What is the spatiotemporal variability of the Earth ionosphere in relation to external drivers both during quiescent and extreme conditions?

Fast Iterative Filtering in a nutshell

Fast Iterative Filtering (FIF) algorithm

is a decomposition method that split a nonstationary signal *s* into simple oscillatory components, a.k.a. IMCs

Given $s \in \mathbb{R}^n$, a filter w and periodical extension at the boundaries, Then $IMC_1 = U(I-D)^{N_0}U^Ts = IDFT ((I - diag(DFT(w)))^{N_0}DFT(s))$

Fast calculations

The **FIF algorithm** is convergent and stable, and, on average, roughly **100 times faster than IF and EMD-based methods**.

$$s = \sum_{i=1}^{N_{IMC}} IMC_i(v) + res$$

Method

Swarm-VIP: scale analysis

Results: comparison FIF/CWT/FFT

IMFogram has less artifacts and higher resolution in time/frequency.

We identified intensification of scales in the auroral and polar regions

Other investigated storms show similar behavior

Drivers/Proxies: PC and AE

Scales at 20 km, 50 km and 100 km are often involved in the intensification

As IPIR directly provide gradNe@XXkm (XX=20, 50, 100), we decided to used that to develop the model

Linear Model

$$E(y) = \beta_0 + \beta_1 \cdot x_1$$

Multivariate Linear Model

Multi term model: Which combination of heliogeophysical proxies, and hence which processes, best explain the variability of ionospheric plasma observed?

- Add one independent variable to model
- Try adding other independent variables one at a time, and add the next most significant to the model (exclude any variable which is correlated with any term already in the model by more than |0.25|)
- Repeat, until there are no more statistically significant terms to add to model

Single term model: Which heliogeophysical proxies, and hence which processes, dominate? How does this vary between different regions?

Mid-latitudes		Auroral latitudes		
Independent variable	Significance Level	Independent variable	Significance Level	
Electron density	5	Electron density	5	
DOY function	5	F10.7 cm solar radio flux 27-day average	5	
SYM-H	5	Кр	4	
F10.7 cm solar radio flux daily	5	F10.7 cm solar radio flux daily	4	
IMF Bt average	5	IMF By stdev	3	
F10.7 cm solar radio flux 27 day average	5	IMF By average	3	
Кр	4	IMF Bz stdev	2	
F10.7 cm solar radio flux 81 day average	4	IMF Bx stdev	2	
Latitude	3	Solar wind pressure stdev	1	
IMF By average	2	Latitude	1	
Elya solar wind coupling function average	2	Elya solar wind coupling function stdev	1	
Newell solar wind coupling function average	2	Newell solar wind coupling function stdev	1	
AE	2		•	
IMF Bz stdev	2			
IMF By stdev	2			
Newell solar wind coupling function stdev	1			
IME Bt stdey	1			

What is the influence of these processes on the variability of ionospheric plasma, and how does this vary with different spatial regions?

Example model: Polar model of |GradNe@100km|

$$|GradNe@100| = \left(\exp\left(\frac{-1.9 + 5.3x10^{-3} \cdot F107_{81} + +9.1x10^{-3} \cdot |MLAT| +}{+(...) + 1.3x10^{-3} \cdot SYM_D}\right)\right)^3$$

- F107₈₁ 81 day average of the F10.7cm solar flux, centred on the day to be updated
- |MLAT| Absolute value of magnetic latitude (in degrees)
- SYM_D The longitudinally symmetric disturbances to the terrestrial magnetic field perpendicular to the dipole axis

Models created for Ne, |Grad_Ne@100km|, |Grad_Ne@50km| and |Grad_Ne@20km| in the polar, auroral, mid-latitude and equatorial regions

Swarm-VIP: Auroral Models and ISMR data at high latitudes

Enhancements of σ_{ϕ} present a good correspondence with the bulk behaviour of the modelled IPIR index

Time series of σ_{ϕ} (blue) for every GPS satellite at elevation >30° by MZSOP (a), SANOP (b), DMCOP (c), and NYAOP (d) receivers and of the corresponding IPIR index from **auroral** model (red), for the period 5-10 September 2017.

Predictions and observations compared for four week long case studies

Model	Region	Goodness of fit					
		RMSE	rRMSE	ME	Precison	Correl.	
Swarm- VIP model	Polar	2.50	0.16	0.37	0.55	0.65	
	Auroral	2.23	0.15	0.15	0.70	0.62	
	Mid	2.57	0.16	-0.04	0.76	0.48	
	Equatorial	1.01	0.14	-0.07	0.72	0.43	
TIEGCM	Polar	3.45	0.23	-1.56	0.57	0.36	
	Auroral	3.22	0.22	-1.72	0.61	0.36	
	Mid	2.87	0.18	0.18	0.72	0.32	
	Equatorial	1.16	0.16	0.77	1.03	0.67	

- Swarm VIP models show a moderate improvement over TIE-GCM in the polar, auroral and mid-latitude sectors
- TIE-GCM shows a moderate improvement over Swarm VIP models in the equatorial sector
- Sometimes TIEGCM represents the Swarm observations well, e.g, ionosphere dominated by photoionisation, but when the ionosphere is variable, TIEGCM does not always capture that variability.
- TIEGCM does not always capture ionospheric structures during quiet conditions
- Possible reason: A statistical model can respond more quickly to changes in the driving conditions
- Swarm VIP models also capture smaller scales (100km, 50km and 20km)

- LEO satellites, such as Swarm, allow for addressing plasma structuring at different scales at all latitudes.
- The Swarm dataset allows for global ionospheric modeling and even longer mission will lead to even better models.
- There is a link between scintillations indices observed on the ground and modeled parameters related to plasma structuring (IPIR index).
- There is a strong potential for LEO satellites for space weather monitoring and contributing to space weateher services through both models and instant observations.
- Swarm-VIP model will be soon released! Everyone is welcome to join our efforts!

