

Statistical estimates of auroral Pedersen conductance using Swarm measurements

H. Vanhamäki¹, A. Aikio¹, K. Kauristie², S. Käki² and D. Knudsen³

1: University of Oulu
2: Finnish Meteorological Institute
3: University of Calgary

Background

- Ionospheric Pedersen conductance $\Sigma_{\rm P}$ plays an important role in MI-coupling
 - e.g. closure of FAC, Joule heating
- Conductance is difficult to measure directly, especially in hemispheric scales
- We try to estimate statistical maps from Swarm ion drift (V_{ion}) and magnetic (B) field data
- Same approach as in <u>Sugiura et al. (1982)</u>
 - Linear regression between \boldsymbol{E} (or \boldsymbol{V}_{ion}) and $\Delta \boldsymbol{B}$ measured by a LEO satellite
 - Slope of the line gives $\Sigma_{\mbox{\tiny P}}$

Theory

- Case 1: Electrostatic situation
 - Assume conductance gradients are everywhere parallel to E
 - ==> Pedersen current = curl-free, Hall current = divergence-free
 - Relation for curl-free current and their magnetic field (e.g. Vanhamäki+Juusola, 2020)

 $\Delta \mathbf{B}_{cf} = \mu_0 \, \hat{\mathbf{e}}_{B} \times \mathbf{J}_{cf} \approx \mu_0 \, \Sigma_{P} \, \hat{\mathbf{e}}_{B} \times \mathbf{E}_{cf} \qquad \text{[unit vector } \hat{\mathbf{e}}_{B} \text{ along main field]}$

- Case 2: Alfven wave reflection
 - Incident wave (↓) from magnetosphere, reflected wave (↑) from ionosphere
 - Wave fields $\Delta \mathbf{B}^{\downarrow} = -\mathbf{E}^{\downarrow} \times \hat{\mathbf{e}}_{B} / V_{A}$ and $\Delta \mathbf{B}^{\uparrow} = \mathbf{E}^{\uparrow} \times \hat{\mathbf{e}}_{B} / V_{A}$ [$V_{A} = Alfven velocity$]
 - Superposed wave fields $\Delta B_{\mu} = \Delta B^{\downarrow} \Delta B^{\uparrow}$ and $E_{\mu} = E^{\downarrow} + E^{\uparrow}$
 - If conductance gradients are parallel to \boldsymbol{E}_{w} , we have $\boldsymbol{E}^{\uparrow} = R \boldsymbol{E}^{\downarrow}$ with $R = (\Sigma_{A} \Sigma_{P})/(\Sigma_{A} + \Sigma_{P})$. [e.g. Glassmeier (1984), Σ_{Δ} is the Alfven conductance]
 - This results in relation $\Delta B_{\rm w} = \mu_0 \Sigma_{\rm P} \hat{\mathbf{e}}_{\rm B} \times \mathbf{E}_{\rm w}$
- Both cases give the same relation
 - Get electric field from ion drift ==> $\Sigma_P V_{ion} = -k \Delta B$ where $k = \mu_0 |B_{main field}|$
 - Need to assume that divergence-free currents (electrojets) do not affect measured ΔB . Most easily satisfied in 1D situation, e.g. a uniform electrojet.

Data & analysis

- Swarm-A and -B
 - 12/2013 04/2022
 - <u>Thermal ion imager 2 Hz data</u> (0302 version)
 - Only cross-track (ct) ion velocity V_{ion,ct} is used
 - Remove <u>CHAOS-7</u> from **B** to get ΔB_{ct}
- Steps in conductance estimation
 - 1) Remove $V_{ion,ct}$ with bad calibration flags
 - 2) Remove $|\Delta B_{ct}| > 5000$ nT or $|V_{ion,ct}| > 5000$ m/s
 - 3) Smooth with 13 point moving median (2 Hz data ==> about 45 km)
 - 4) Fit slope to ($V_{ion,ct}$, k ΔB_{ct}) in 13 point moving window
 - 5) Correlation ($V_{ion,ct}$, k ΔB_{ct}) in 13 point moving window ==> Remove if > -0.70
 - 6) Calculate angle of orbit wrt. constant magnetic latitudes ==> Remove if <45°
 - 7) Remove all data with $\Sigma_P < 0$
- Grid data
 - 1º mlat / 1h mlt, median in each grid cell

Raw statistics

- North hemisphere, all seasons together
- Swarm-A and Swarm-B analyzed separately
- Different orbits ==> data to same mlat/mlt bin comes from different months
- Same overall pattern
- Result is not sensitive to details in analysis

Bootstrapping

- Unequal sampling of seasons and conditions
 - Activity described by Kp index
- Bootstrapping
 - Each mlat/mlt grid cell separately
 - Random re-sampling with replacement
 - Each sample as big as the original
 - 1000 repetitions
- Remove biases by bootstrapping
 - Force same Kp distribution in each grid cell & season
 - Draw equal # of points from each season
 - Use average Kp distribution (all seasons, Swarm-A & B, both hemispheres)

Hemispheres

- All seasons together, Swarm-A & B together, bootstrapped
- North and south hemispheres separately
- Our selection criteria remove more points in the south
- Overall quite similar
 - Differences in the afternoon sector
 - Larger latitude spread in south

Seasons

- North hemisphere, Swarm-A & B together, bootstrapped
- Winter is as expected
- Autumn has larger Σ_P than spring in the morning side, bit weaker in evening.
- Summer Σ_P has some resemblance to particle flux in <u>Newell et al. (2011)</u>
- Why so weak dayside conductances?

Issues?

- The total current system (FAC + horizontal J) can be divided to
 - FAC + curl-free J_{cf}
 - Divergence-free \boldsymbol{J}_{df} (shown as streamlines)
- <u>We assume</u>: measured ΔB corresponds to J_{cf} , and furthermore $J_{cf} \approx J_{pedersen}$

Summary and Discussion

- Estimated Σ_{P} using ~8 years of Swarm data
- Results seem robust.
 - Main features are not sensitive to details in the analysis
- Bootstrapping is used to mitigate seasonal and Kp biases
 - Oval visible in all seasons, weakest in summer.
 - Dawn/Dusk asymmetry varies with season.
 - Equinoxes show early afternoon enhancement.
 - North hemisphere has sharper oval than south.
- Some points to keep in mind
 - Outside the oval divergence-free electrojet currents may distort the measured ΔB_{ct}
 - Also assumption $J_{cf} \approx J_{pedersen}$ may be invalid outside the oval
 - For Alfven waves the result $\Delta B_{w} = \mu_{0} \Sigma_{P} \hat{e}_{B} \times E_{w}$ is valid for all frequencies, but includes assumption of expt(iz/ λ) altitude dependence

Correlations

- North hemisphere, all seasons together
- Swarm-A, 2013-2022
- Mostly negative correlation between $\Delta \mathbf{B}$ and \mathbf{V}_{ion} , as expected
- Filtering with correlation removes most $\Sigma_P < 0$ (not all)
- Why secondary peak at positive correlation? Upward Alfven waves?

Kp levels

- All seasons together, Swarm-A & B together, bootstrapped
- Low Kp [0 1] and high Kp [2- 3+] separately
- Overall as expected
 - High Kp has larger Σ_P and wider oval.