

living planet symposium BONN 23-27 May 2022

TAKING THE PULSE OF OUR PLANET FROM SPACE

Status of Aeolus-2 Preparation Activities

Denny Wernham, Arnaud Heliere, Graeme Mason, Thorsten Fehr

The European Space Agency,

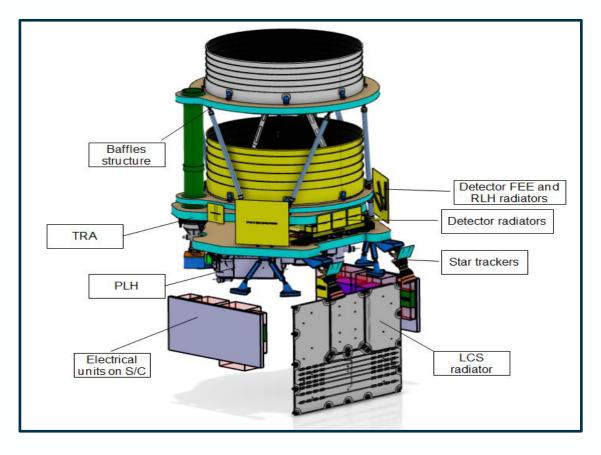
25th May 2022

ESA UNCLASSIFIED – For ESA Official Use Only

Contents

- 1. System Accommodation Phase A2/B1
- 2. Instrument Consolidation Study
 - Design
 - Budgets
 - Performance (precision)
 - Performance (bias)
- 3. Laser Transmitter and Detector Predevelopments
- 4. Summary

System Accommodation Phase A2/B1

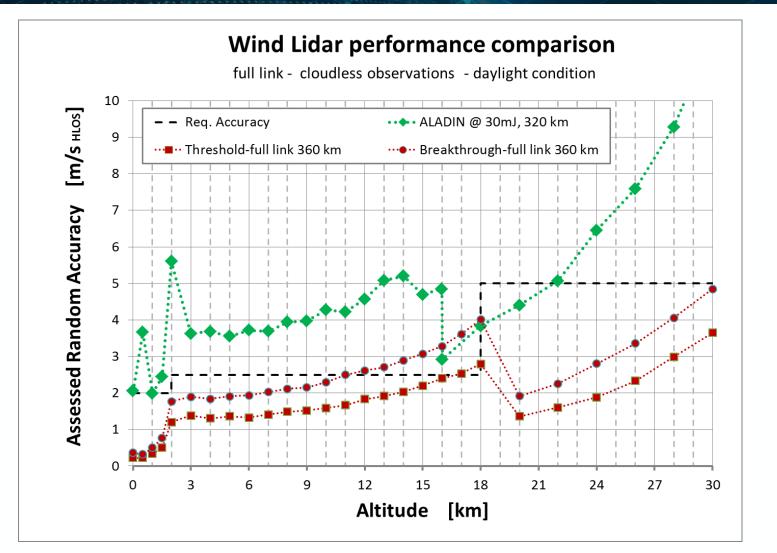

- Instrument ICDs completed December 2021
- Statement of Work and Space Segment Requirements Documents completed and ITT issued end January with strong emphasis on:
 - Aeolus/EarthCARE lessons learned and resolving ALADIN in-orbit performance issues
 - EUMETSAT and ASAG inputs to requirements for a future DWL
 - Lifetime (5.5yrs), operability, robustness, launch date (2030)
 - Risk analysis and identification of critical technologies and needed pre-development activities
 - Compatibility with a VEGA-C launcher
 - Cost reductions via use of heritage platforms and recurrent units wherever possible
- In addition the potential implementation of:
 - A cross polar channel (a preliminary analysis has been performed by the Instrument Team)
 - A Radio Occultation Instrument
- Proposals received from Industry and currently under evaluation
- Key dates:
 - KO (Jun 2022)
 - PCR end of Phase A2 (Oct 2022)
 - CMIN (Nov 2022)
 - PRR beg. of Phase B1 (Jun 2023)
 - ISRR end Phase B1(Dec 2023)

💻 💼 🛶

Instrument Consolidation Study - Design

- Bi-static configuration (ATLID-like) confirmed as baseline
 - Separates high (emit) and low (receive) intensity paths
 - Safer LID/LIC management
 - Fully redundant emit path (highest risk)
 - Removes several Single Point Failures
- Stacked design with separate benches confirmed as baseline
 - Modular concept
 - Best for dynamic mechanical performance
- Cons:
 - Higher mass and power (transmitter pressurization, telescope reduction to albedo sensitivity)
 - More sensitive to bias ⇒ need course alignment sensor and beam steering mechanism

Instrument Consolidation Study - Budgets


TOTAL MASS	617	17%	724
TOTAL MASS with APPENDAGES	623	17%	731
TOTAL MASS With UNITS ON S/C & APPENDAGES	716	17%	835

- **Mass** of the instrument is 835kg c.f. ALADIN which was 450kg
- Recent dynamic mechanical analysis has shown a first frequency with insufficient margins
 ⇒ need to increase
 the stiffness of the instrument
- This may lead to further mass increases
 - Airbus requested to trade the performance gains of the telescope/baffle versus the mass increases (~60kg)
 - Further iteration to be performed before System Accommodation Phase A2/B1 KO (June)
 - May have implications for the embarkation of a Radio Occultation Instrument (33kg)
- **Power** consumption is 1250W c.f. ALADIN which was 850W
 - Additional solar array panels (more mass)

Rapid consolidation of the above with S/C primes to be performed in first co-engineering workshops

Instrument Consolidation Study – Performance (precision)

Random error performance:

- Compliant to breakthrough requirement up to 12km
- Small non-conformance to threshold requirement 16-18km but this is acceptable (requirement has been amended in the SSRD).
- Impact of solar background noticeable for altitudes >9km
- Note the above assumes full link budget (i.e. recovery of the initial losses found on ALADIN and 125mJ UV energy)

Instrument Consolidation Study – Performance (bias)

• Bias performance:

- Major non-compliance for the zero wind bias ($1\sigma = 1m/s$ threshold and 0.5m/s breakthrough)
- Current performance estimate is x8.5 higher at instrument level
- It is clear that the current instrument configuration cannot meet the bias requirement without utilizing the M1/ECMWF model correction.

• Corrective actions:

- Increase of the primary telescope mirror mass (x1.5) and improved athermalisation in order to reduce the suborbital bias (impact still to be analysed)
- Improved thermal control and temperature monitoring
- Tightening of laser beam divergence and beam divergence stability requirements (70±5)µrad and 8% (P-V) over ST (1BRC = 12s) <u>very demanding</u>
- Trade-off and initiation of pre-development bread-boarding of alternative optical architectures (2 wave, fieldcompensated interferometer (IFM); fibre source at receive path focal plane)
- Initial results show that the IFM which should be angularly insensitive could reduce the NC to a factor of x1.6 above the requirement but will require extensive development effort
- Fibre solution performance being analysed (increased etendue at fibre output, speckle, impact on radiometric budget)
- Increase pupil at RSP has been discarded (heavy development for limited gain)

Laser Transmitter and Detector Pre-developments

- 2 parallel laser pre-developments (Leonardo (IT) and Fraunhofer Institute of Laser Technology (DE)) and a detector pre-development (Teledyne-e2V (UK))
 - PDR for Wind Lidar Detector successfully completed in Sep. 2021
 - PDR for Laser Transmitter Assembly pre-development with Leonardo successfully completed in Oct. 2021
 - PDR for Laser Transmitter Assembly with Fraunhofer ILT completed Dec. 2021
- Detector pre-development:
 - Aeolus heritage largely retained
 - Architecture compatible with 67 vertical samples (an extension up to 133 vertical samples will also be evaluated)
 - No shots lost (between 2 accumulations)
 - 2 read-out outputs (1 for internal reference and background echo- 1 for atmospheric echo) : reduce Hot pixels. Capability to monitor each ~30s hot pixels (if any).
 - Detector operated at -50degC to reduce hot pixels. CAS has been added to the development via change request.
 - DDR currently running to release wafer manufacture

- System Accommodation Study Phase A2/B1 nearing tender completion with KO planned in June and PCR planned before CMIN Nov. 2022
- Instrument Consolidation Study extended for 18 months mainly to deal with:
 - Support the S/C primes with the System Accommodation Study activities
 - Consolidate the optical design and performance (including the contributions from the S/C)
 - Refine the co-alignment loop and its performance modelling
 - Support the ongoing laser and detector pre-developments
 - Define the bread-boarding activities needed for the instrument (EBEX, alternative back-up for RSP FP spectrometer,...)
- Laser transmitter developments on-going with parts procurement and manufacturing with the aim to have some performance demonstrations this year
- Detector development in detailed design phase with wafer manufacture to follow