

The RO instrument onboard MetOp Second Generation

Cesa M. Loiselet, A. García-Rodriguez, G. Mason (ESA/ESTEC)
AIRBUS D. El Semari-Teixeira, N. Célérier (Airbus-TLS/FDH)
beyond gravity T. Liljegren, J. Christensen, A. Carlström (Beyond Gravity)
CEUMETSAT S. Remus, J.J.W. Wilson (EUMETSAT)
Living Planet Symposium 2022 | MOS-HO-ESA-RO-2361 / 25 May 2022

ESA Unclassified – For ESA Official Use Only

Slide 1

Radio Occultation Principle

Three antennas:

- Zenith side for position&Velocity
- Velocity for Rising Occultation
- Anti-Velocity for Setting Occultation

The Earth atmosphere bends and delays the GNSS signals received proportionally to its characteristics.

Needs dual frequencies, very accurate satellite velocities, Frequency shortterm stability.

ESA Unclassified – For ESA Official Use Only

Living Planet Symposium 2022 | MOS-HO-ESA-RO-2361 25 May 2022 Slide 2

→ THE EUROPEAN SPACE AGENCY

esa

RO Instrument Overview

→ THE EUROPEAN SPACE AGENCY

- GNSS Electronic Unit:
 - GPS, Galileo, BeiDou (optional GLONASS)
 - Dual frequency L1/L5
 - Frequency Domain Adaptive Filter (FDAF) FPGA (FRODO)
 - Ultra Stable Oscillator (USO)
- RO occultation antennas (x2) and POD navigation antenna
- External LNAs (x3)

Main interface data:

- Mass: 25 kg
- Power: 40 W
- Data Rate: 1.1 Mb/s

ESA Unclassified – For ESA Official Use Only

RO Instrument Status

→ THE EUROPEAN SPACE AGENCY

- The RO Proto Flight Model (PFM) test campaign was completed in 2020 with excellent results and was the first instrument delivered to Satellite-A Prime in October 2020. It has been fully integrated and tested onto the satellite-A PFM.
- The RO FM2 was fully tested and delivered to Satellite-B Prime in April 2021, integrated and is under final testing.
- The RO FM3 has been fully tested in October 2021 and is under test with BeiDou SW.
- The RO FM4 has been updated with BeiDou SW and full functional and performance tests have been completed.
- The RO FM5 & FM6 are assembled and will be tested.
- The qualification testing of the SW including Beidou constellation has been completed. PFM and FM2 will be retrofitted and verified at satellite level.

ESA Unclassified – For ESA Official Use Only

RO PFM on Satellite A1

Zenith Antenna

Anti-Velocity Antenna

Velocity Antenna

→ THE EUROPEAN SPACE AGENCY

Electronics Unit and USO

ESA Unclassified – For ESA Official Use Only

RO FM2 on Satellite B1

Zenith Antenna

Anti-Velocity Antenna

Velocity Antenna

→ THE EUROPEAN SPACE AGENCY

Electronics Unit and USO

ESA Unclassified – For ESA Official Use Only

RO Performances and Processing

→ THE EUROPEAN SPACE AGENCY

- About 2000 occultations/day/instrument by tracking simultaneously Galileo, GPS and BeiDou,
- From Surface to 500km altitude
- Bending Angle RMS error about 0.3-0.4 microradian in the upper atmosphere,
- Interference mitigation in L5.
- Ground Processing Algorithms finalised and tested

Level2 products: (high resolution vertical profiles)

- Atmosphere: Refractivity, Temperature and Humidity
- Ionosphere: Electron density

MetOp-SG	From GRAS to RO instrument	C	Sa
	GRAS on MetOp	RO on MetOp-SG	
Nb of instruments	3 (1 per satellite)	6 (1 per satellite)	
Nb of constellations	1 (GPS)	3-4 (Galileo, GPS, BeiDou, resources for 4 th one)	
Nb of occultations	~650/day/instrument	~2000/day/instrument	
Bending Angle [rms]	1µrad or 0.4% (90%)	0.5µrad or 0.2% (1σ)	
Vertical profile	1-80km	0-80km, 80-500km	
USO Allan variance	1e-12	5e-14	
Interferences Protection	None	L5 Freq Adaptive Filter	
Reliability	0.8 over 5 years	0.85 over 7.5 years	

ESA Unclassified – For ESA Official Use Only

Living Planet Symposium 2022 | MOS-HO-ESA-RO-2361 | 25 May 2022 | Slide 8

+

*

→ THE EUROPEAN SPACE AGENCY

→ THE EUROPEAN SPACE AGENCY

- The heritage of RO is the GRAS instrument on MetOp-A/B/C, reference instrument for Numerical Weather Forecasting and Climate Monitoring.
- The RO will outperform these performances with about 2000 occultations per day per instrument (Galileo, GPS, BeiDou) and 0.3-0.4 microradian Bending Angle in the upper atmosphere. A 4th constellation tracking is possible.
- The first two RO instruments are already accommodated on the first two satellites.
- Six instruments have been built, one on each of the MetOp-SG satellites.
- The testing of the SW with BeiDou constellation has been completed and will be uploaded on all instruments.
- RO, together with the European built MetOp-SG instruments, will provide the best ever Scientific Products, measured simultaneously over the same area.

ESA Unclassified – For ESA Official Use Only