

living planet symposium 23-27 May 2022

TAKING THE PULSE OF OUR PLANET FROM SPACE

MetOp Second Generation: System Overview

B5.01.2 Future Meteorological Missions: MetOp-SG 1 (25/05/2022)

ESA UNCLASSIFIED – For ESA Official Use Only

→ THE EUROPEAN SPACE AGENCY

MetOp Second Generation: System Overview

ESA Living Planet Symposium 23-27 - May - 2022 - Bonn B5.01.2 Future Meteorological Missions: MetOp-SG 1 on 25 - May - 2022

<u>Fermín Álvarez López¹</u>, Stéphane Rousseau¹, Graeme Mason¹, Michel Pendaries², Hervé Marcille², Markus Huchler³, René Fayard³ ¹ ESA/ESTEC, Noordwijk, The Netherlands ² AIRBUS Defence and Space, Toulouse, France ³ AIRBUS Defence and Space, Friedrichshafen, Germany ESA Unclassified – For ESA Official Use Only ESA Living Planet Symposium 2022 | MOS-HO-ESA-SYS-2367 | 23-27 May 2022 |

MetOp-SG Introduction

- MetOp-Second Generation (MetOp-SG) is a follow-on system to the first generation series of MetOp (<u>Met</u>eorological <u>Op</u>erational) satellites, which currently provide operational meteorological observations from polar orbit.
- MetOp-SG represents the European component of the space segment of the Joint Polar System, which is a collaboration between EUMETSAT and NOAA, whereby Europe is responsible for the "mid-morning orbit" and the US is responsible for the "afternoon orbit".
- MetOp-SG is a collaborative programme between ESA and EUMETSAT, similar to previous successful cooperation between the two organisations.
- ESA is responsible for the development of the prototype satellites and, on behalf of EUMETSAT, for the procurement of the recurrent satellites.
 All contracts regarding the MetOp-SG Satellites are under ESA authority and in accordance with ESA rules and regulations.
- EUMETSAT is responsible for the overall user requirements, procurement of the launchers and LEOP services, development of the ground segment and also performs the operations.

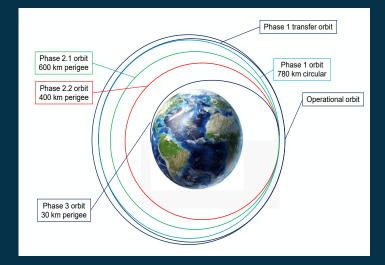
MetOp-SG Objectives

- To provide operational observations and measurements from polar orbit for Numerical Weather Prediction and climate monitoring from the 2020's, with at least 21 years of operations.
- In addition, to provide services to atmospheric chemistry, operational oceanography and hydrology.
- With respect to the first generation of MetOp satellites:
 - to ensure continuity of essential operational meteorological observations from polar orbit, without a gap;
 - to improve the accuracy / resolution / dynamic range of the measurements (e.g. MWS, RO, SCA as well as METimage, IASI-NG, Sentinel-5);
 - to add new measurements / missions (e.g. 3MI, MWI, ICI as well as Sentinel-5).

MetOp-SG Satellites Overview

- MetOp-SG consists of two series of satellites (Sat-A and Sat-B), with with a maximum of commonality between the two series (design & operations).
- Baseline of three satellites in each series, to cover 21 years of in-orbit operations – with nominal launches for each series every 7 years.
- The MetOp-SG satellites will fly in the same orbit as the first generation MetOp (sun-synchronous, polar orbit, altitude 832 km, mean local solar time 09:30 (descending node), repeat cycle 29 days).
- A total of ten instruments are flown across the two satellites:
 - six Contractor Provided Item (CPI) instruments developed under the MetOp-SG contracts;
 - four Customer Furnished Item (CFI) instruments provided by ESA Copernicus or from DLR or CNES via EUMETSAT: Sentinel-5 (ESA Copernicus), METimage (DLR), IASI-NG (CNES), Argos-4 (CNES).
- More than **200 companies** working all over Europe on the satellite Programme.

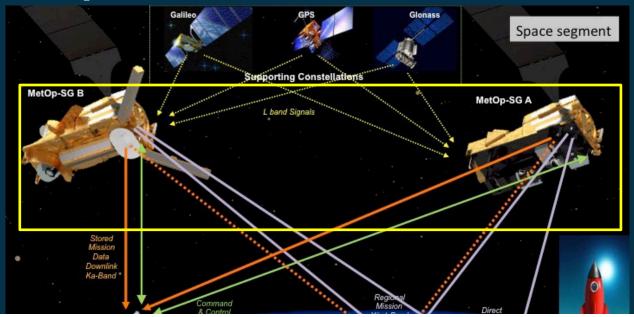
Mission Phases Overview



- Launch and Early OPerations (3 days + 5 to 27 days orbit drift)
 - Initial attitude tumbling + rate reduction with magnetometer and propulsion
 - Steady state based on B-dot law with magnetometer and magnetotorquers
 - Commanding to Earth Pointing after Star tracker and GNSS convergence
 - LEOP including phasing: 8 to 30 days
- **Commissioning phase** (SIOV + PL calibration) (3 + 3 months)
 - Decontamination phase (PL radiators heating)
 - Specific -120° roll slew in eclipse for Instruments cold space calibration
 - Geo-location and Co-registration assessment in flight

POSTER: GLANCE: A Multi-sensor Geolocation and Co-registration Verification Toolbox

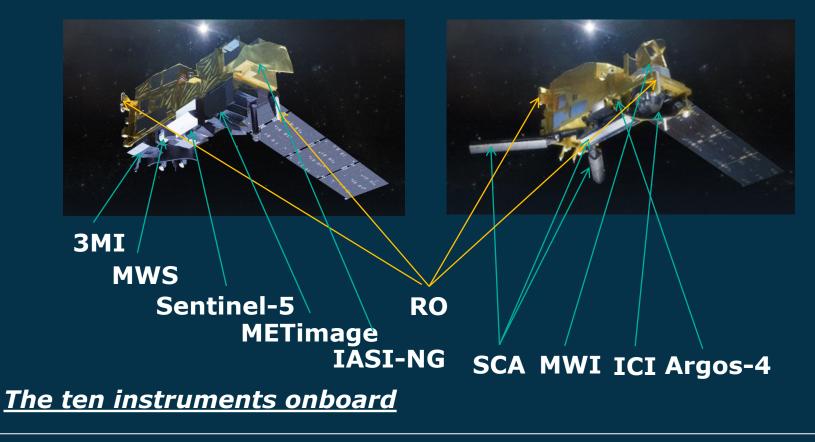
Poster Session Thursday 26th May – 18:20


- Nominal Mission (7 years + 2 years extension)
 - Simultaneous/permanent operation of all instruments
 - Including during in-plane orbit maintenance and collision avoidance
 - Nominal pointing interruption limited to safe mode and inclination manoeuvres (90° slew, in eclipse)
- Controlled Re-entry (~ 1 week)
 - Use of re-pressurization system and specific 400N main engine
 - Back-up using the 8x20N thrusters (Nom + Red RCT)
 - Re-entry perigee of 30 km in both nominal & back-up cases fully compatible with the SPOUA authorized zone

MetOp-SG Satellites Context

Full System Presentation: later, on this session by EUMETSAT

MetOp-SG Satellites Key Parameters


	Satellite A	Satellite B								
Configuration										
Instrument Suite	IASI-NG, METimage, Sentinel-5, MWS, 3MI, RO	SCA, MWI, ICI, RO, ADCS-4								
Main Satellite Budgets	Satellite launch mass = 4.4 tons max Mean power consumption in operations = 3.0 kW Mean day / night instruments data rate = 68 / 26 Mbps	Satellite launch mass = 4.4 tons max Mean power consumption in operations = 2.2 kW Mean day / night instruments data rate = 17 / 17 Mbps								
Mission	Launchers: Beyons in Kourou / Ariane E (dued Leurent) Ariane 6 (abjective) / Falcon 9 Operational orbit: SSO 835 km average altitude, 9h30 LTUN7 controlled Re-Entry on South Pacific Ocean Uninhabited Area									
Mechanical Architecture	Primary structure in CFRP providing a single, large, stable CFRP nadir panel for instruments heads and antennas Secondary structures in Aluminum: 4 lateral panels for platform units, Power Units Bay (PUB), Payload Equipment Bay (PEB)									
Thermal Control	Platform thermal control based on SSM / MLI / heaters / embedded heat pipes on PUB zenith panel / instruments are thermally decoupled									
Propulsion	Single hydrazine tank filled with up to 760 kg of hydrazine / 4 Helium high pressure vessels / 2 x 6 20 N thrusters / 1 x 400 N engine									
Data Handling	SpaceWire for science data and command and control data / 1553-MIL-bus for platform units and ADCS-4 / MMFU of 745 Gbits EoL storage capacity									
Communications	SMD downlink in Ka-band, OQPSK modulation, (2 + 1) x 390.5 Mbps SMD downlink in Ka-band, OQPSK modulation, (1 + 1) x 390.5 Mbps									
	DDB in X-band, QPSK modulation, (1 + 1) x 80 Mbps information rate TTR in S-band, uplink at 64 kbps, downlink in LR at 64 kbps with ranging / in HR at 1.6 Mbps (incl. formatting & coding)									
Power	Main power bus on 50V unregulated, 30V unregulated available for specific users									
	1 single solar array wing, 1-axis rotated, 23.9 m² populated with triple junction GaAs solar cells 7.3 kWh BoL power / 20 sections / 6600 cells 5.4 kWh BoL power / 16 sections / 5040 cells									
	4 x 54 Ah battery modules (12S12P) = 216 Ah	3 x 54 Ah battery modules (12S12P) = 162 Ah								
AOCS	Magnetic safe mode based on magnetometer and magnetotorquers / Propulsion for initial rate reduction only Attitude and orbit determination based on standard GNSS receiver and 3 star tracker heads (gyroless)									
	Attitude and orbit determination based on standard GNSS receiver and 3 start Actuators: cluster of 5 wheels (65 Nms each)	Actuators: cluster of 6 wheels (65 Nms each)								
Operations & FDIR	Enhanced autonomy with time-tag, orbit position-tag and event-tag programming / FDIR concept: fail operational on first failure, fail-safe on second failure									
Lifetime & Reliability	Nominal mission lifetime = 7.5 years / Resources sized for mission extension up to 9.5 years / Each mission reliability = 0.75 after 7.5 years									
Enotine & Ronability	Homman moster meaning – 1.5 years r resources sized for mission extension up to 3.5 years / Laur mission reliability – 0.75 diter 1.5 years									

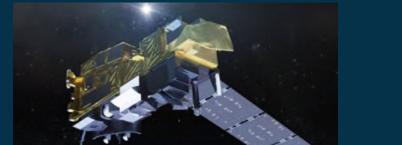
+

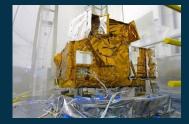
8

MetOp-SG Satellite A and Satellite B esa

■ ■ ■ ++ = = = := |■ != = |■ |■ = ++ = = |■ |■ |= |# |# ++ ++ ++ = = = = !● |♥|

MetOp-SG Payload Overview




RO

SATELLITE A

IASI-NG

See dedicated presentations METimage, IASI-NG and Sentinel 5 : B5.01.2 (Afterwards) MWS, RO and 3MI: B5.01.3 (Here, after lunch)

MWS

3MI

Sentinel-5

METimage

MetOp-SG Payload Overview

MWI

RO

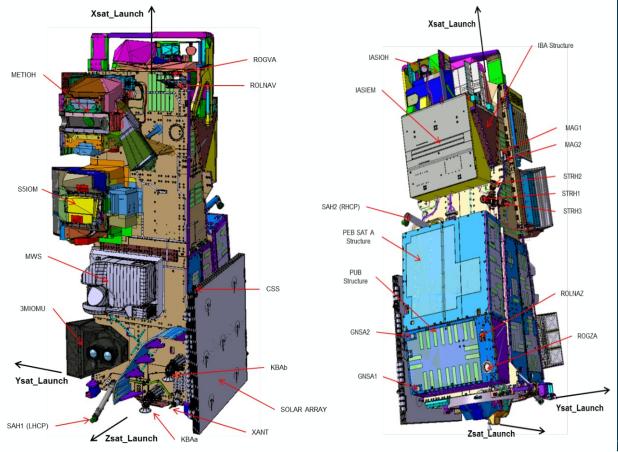
SATELLITE B

See dedicated presentations RO, SCA, MWI and ICI : B5.01.3 (Here, After lunch)

ICI

ARGOS-4

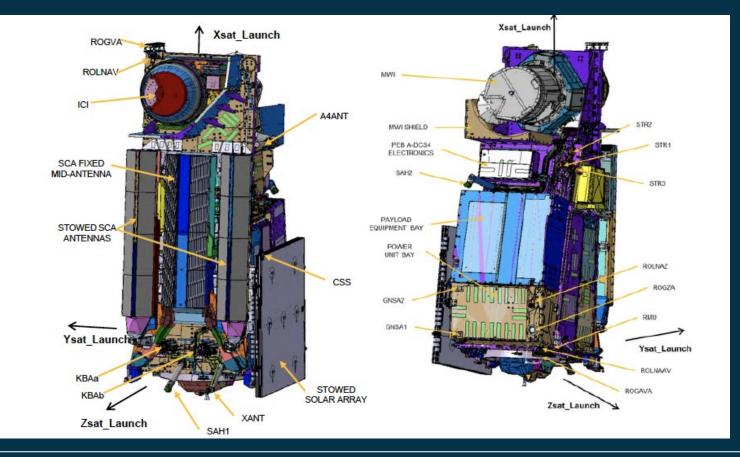
💳 💶 📕 🕂 💳 🚍 📕 🏥 🔲 🗮 🔤 📕 🔚 💳 👫 💳 🖬 🗿 🚬 📲 👫 🛨 🔤 💳 🚺 🔶 🔸 the european space agency



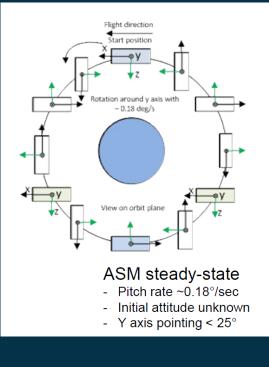
۲

Satellite-A Configuration

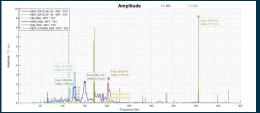
Coarse Earth Sensor removed since change to full magnetic acquisition and safe mode

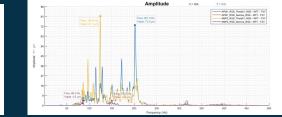


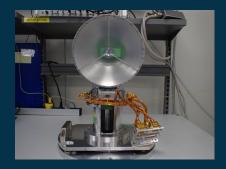
Satellite-B Configuration

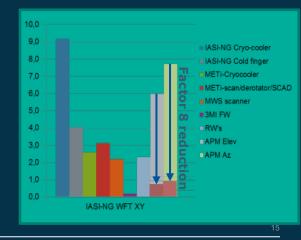


🔚 🚼 📕 🚝 📕 📕 🚍 👬 🚍 🥁 🧖 🎽 📕 👫 🕂 🖬 📰 🔤 🔤 🖉

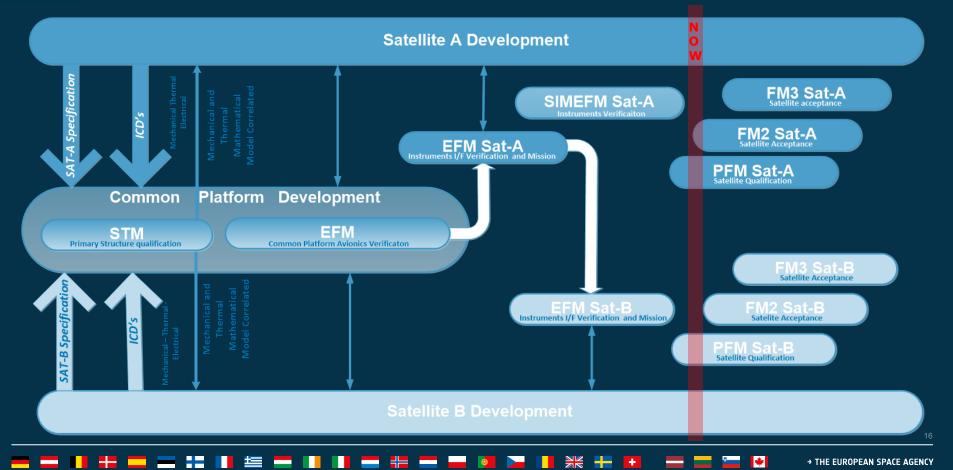

MetOp-SG System Evolution since CDRs @esa


- Safe Mode based on Earth pointing replaced by Full Magnetic safe mode
- Critical temperature sensitivity of the CES sensor, confirmed by test, not compatible with unambiguous Earth detection from lost-in-space attitude
- An alternative full magnetic Safe mode was defined (based on magnetometer only) at the time of SAT B CDR close out
- Two full satellite rotations per orbit about normal to orbit plane, Solar Array Sun pointed
- The New Magnetic Safe Mode has been validated with Satellite Simulator and the avionic test bench (Electrical Functional Model)
- Global power budget has been improved
- Instruments compatibility (e.g. thermal, power) with new Safe Mode confirmed


MetOp-SG System Evolution since CDRs @esa

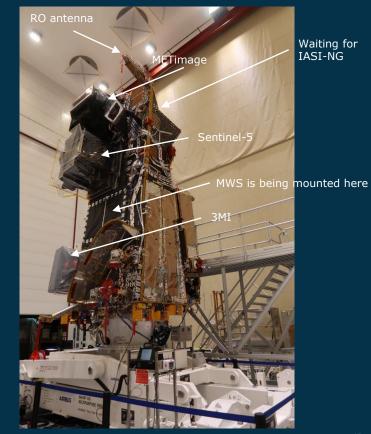

- Ka-Band antenna (KAA) guidance law change due Micro-vibrations
- Following the qualification campaign of the KAA antenna, the exported microvibration were much higher than anticipated and well beyond IASI-NG acceptable level.

- An extensive activity has been implemented to tackle this issue.
- A relation has been established between the angular rate of the antenna and the IASI-NG exited frequencies. As a consequence a new antenna guidance law has been implemented to avoid the critical frequencies.
- The exported perturbation level have been derived by a factor of 8, the issue is considered now solved. The final verification will be performed during the satellite Thermal vacuum campaign.



- 💳 💶 📕 🚼 💳 💳 🚼 📕 🚝 📕 📕 💳 뷰 💳 🔐 🧖 🔤 📲 👫 🛨 📰 💳 🔛 🖉 🛨 🔤 🔤 👘

MetOp-SG Development and Verification



MetOp-SG A1 AIT

- Platform complete
 - Functional Tests under completion
- 4/6 instruments mounted
 - MWI Intermediate flight model
 - 3MI mounted, tests in May-22
 - MWS mounting and tests in May-22
 - IASI-NG expected in August-22 for immediate mounting and tests
- Environment test campaign starts end-22
 - Mechanical tests: Dec-22
 - TVAC: March-23
- Late PFM mounting: S5 (Q4-23), METi (Q1-24)

. 🚍 💶 📕 🛟 🥅 🚍 📲 📕 🚝 📕 📕 🚍 👫 🚍 🛶 🗿 🚬 📕 👯 🖶 🔂 🔤 🔤 👘 → THE EUROPEAN SPACE AGENCY

MetOp-SG B1 AIT

- Platform complete
 - Functional Tests on-going
- 3/5 instruments mounted
 - RO, Argos tested
 - MWI IFM mounted in May-22
 - ICI expected July 22
 - SCA expected in Nov 22
 - MWI PFM Q2 2023
- Environment test campaign starts end-23
 - Mechanical tests: Q4-23
 - TVAC: Q1-24

. 🚍 💶 📕 🚝 🥅 🚍 🔚 🔚 🚝 📕 📕 📲 📲 🚝 🔤 ன 👰 🔽 🚺 💥 🛨 💶 🔚 ன ன ன 👘

<u>+</u>

MetOp-SG Overall Schedule

MetOp-SG Phasing				2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028
Phase B2																		
Phase B2 Kick-Off	TO		28/05/2014															
SRR	T0 + 3m	3	01/09/2014															
PDR (inc. CPI Insts)	T0 + 15m	15	01/09/2015															
Phase C/D																		
Phase C/D	70 47	17	22/11/2015															
Phase C/D Kick-Off	T0 + 17m	17	23/11/2015															
Sat-A CDR	T0 + 51m	51	08/09/2018															
Sat-A QR	T0 + 84m	84	11/06/2021															
Sat-A PFM FAR	T0 + 122m	122	25/08/2024															
Sat-B CDR	T0 + 63m	63	10/09/2019															
Sat-B QR	T0 + 94m	94	14/04/2022															
Sat-B PFM FAR	T0 + 125m	125	01/11/2024															
Phase E																		
Sat-A PFM Phase E1															E1			
Sat-A PFM Launch	T0 + 126m		25/12/2024															
Sat-A PFM SIOVR	T0 + 117m	117	25/03/2024															
Support to Sat-A Routine Ops																Support to	Routine Op	S
Sat-B PFM Phase E1															E1			
Sat-B PFM Launch	T0 + 129m	129	01/03/2025															
Sat-B PFM SIOVR	T0 + 133m	133	01/07/2025															
Support to Sat-B Routine Ops																Support to	Routine Op	s

¥ - +

*

MetOp-SG Milestones

eesa

- Phase B2 Kick-off:
- System Requirements Review:
- Contract Signature Event:
- ✓ Satellite & CPI Instruments PDR:
- Phase C/D Kick-off:
- Lower level PDRs & CDRs ("V" shape):
- Satellite-A System CDR:
- Satellite-B System CDR:
- Satellite-A CPI instrument QR:
- Satellite-A QR:
- Satellite-B QR:

28 May 2014
September – October 2014
16 October 2014
September – November 2015
23 November 2015
November 2015 – July 2018
8 September – 27 November 2018
10 September – 20 November 2019
Sep 2019 – Jan 2021
June - July 2021
14 April – 21 June 2022

Today

- Satellite-A PFM FAR:
- Satellite-A Launch:
- Satellite-B FAR:
- Satellite-B Launch:

August 2024 December 2024 November 2024 March 2025

→ THE EUROPEAN SPACE AGENCY

MetOp Second Generation: System Overview

ESA Living Planet Symposium 23-27 - May - 2022 - Bonn B5.01.2 Future Meteorological Missions: MetOp-SG 1 on 25 - May - 2022

<u>Fermín Álvarez López¹</u>, Stéphane Rousseau¹, Graeme Mason¹, Michel Pendaries², Hervé Marcille², Markus Huchler³, René Fayard³ ¹ ESA/ESTEC, Noordwijk, The Netherlands ² AIRBUS Defence and Space, Toulouse, France ³ AIRBUS Defence and Space, Friedrichshafen, Germany ESA Unclassified – For ESA Official Use Only ESA Living Planet Symposium 2022 | MOS-HO-ESA-SYS-2367 | 23-27 May 2022 | Slide 21