

living planet BONN symposium 2022

TAKING THE PULSE OF OUR PLANET FROM SPACE

EUMETSAT CECMWF

IASI-NG INSTRUMENT DEVELOPMENT STATUS

A.PENQUER . IASI-NG INSTRUMENT MANAGER

CENTRE NATIONAL D'ÉTUDES SPATIALES (TOULOUSE, FRANCE)

· e esa

IASI-NG OVERVIEW

- Part of EUMETSAT EPS-SG
- Embarked on METOP-SG A Satellites serie developed by ESA
- Continuity of IASI first generation operational observations
- Dynamic Fourier Transform
 Interferometer
- Atmospheric calibrated spectra

A

NUMERICAL WEATHER PREDICTION

ATMOSPHERIC CHEMISTRY

CLIMATE MONITORING

IASI-NG INSTRUMENT CONCEPT

- Significant performance improvement with wider field of view (factor 4), allowed by innovative instrumental concept proposed by Airbus Defense and Space
- Associated field effects are compensated in pupil by inserting dynamically variable glass thickness
- Achieved through 2 pairs of KBr prisms, synchronized via an unique device movement
- First implementation in space of a Mertz Interferometer

Dual Swing Mechanism is patented. Frederick Pasternak from ADS is finalist of european inventor award 2022, you can vote for him until June 21th! <u>https://www.epo.org/news-events/events/european-</u> inventor/finalists/2022/pasternak.html

OVERALL DESIGN

Afocal and Imaging Telescopes

Mertz Interferometer

Focal Plane :4 detectors for 4 spectral bands /16 sounder pixels per detector

5 metrology lasers:

- -1 central metrology to give the Optical Path Difference constant triggering
- -4 lateral lasers to monitor in real time the pupil effects (tilt, focus and astigmatism) for correction through on ground processing

SFLOILIOATIONS			1
GEOMETRY	SOUNDER PIXEL SIZE	~12 km	
	SPATIAL SAMPLING	~25 km	SAME AS IASI
	GEOLOCATION ERROR	0.5 km	
SPECTRAL	BAND	645 cm-1 to 2760 cm-1	J
	RESOLUTION	0,25 cm ⁻¹	
	SAMPLING	0,12 cm ⁻¹	2 TIMES BETTER THAN IASI
	CALIBRATION ERROR	d σ/σ= 5.10 ⁻⁷	
RADIOMETRY	CALIBRATION ERROR	0,25K @ 280 K	
	NEDT	NedT ~0.1 K to 0.4 Kwithin spectrum	J

ODECIEICATIONO

MAIN CHARACTERISTICS

SWATH	~ 2000 KM	
FOR	+/- 3°	
PUPIL DIAMETER	~ 90 MM	
ATA MAGNIFICATION	2.3	
MAXIMUM OPTICAL PATH DIFFERENCE	4,2 CM	
ACQUISITION DURATION	~730 MS	
SCAN LINE DURATION	15.6 s : 14 EARTH VIEWS + 1BB + 1CS	
CO-REGISTRATION	INTEGRATED IMAGER	
SPECTRAL CALIBRATION	FABRY PEROT SOURCE	

INSTRUMENT BUDGET

MASS	430 KG	
POWER	~520 W	
I/F DATA RATE	~6 MB/S	

I-OH (OPTICAL MODULE)

I-EM (ELECTRONICS MODULE)

INSTRUMENT DEVELOPMENT

TWO MODELS IN PARALELL

EM Instrument

Critical subunits representative of Flight Models Qualfication of critical subunits Functional tests with EM SW EMC (conducted) qualification µvibration campaign for earlier end to end validation Procedure validation at Satellite level

PFM Instrument

Performance assessment at subunit level Integration/alignment Mechanical qualification Final functional tests with PFM SW Performance tests at ambiant TVAC & final performances EMC (radiated) qualification

EM INSTRUMENT CAMPAIGN

IFM EQM QUALIFICATION

Mechanical qualification

Maximum levels passed with success on sensitive parts

Thermal qualification

Temperature gradient and slopes within required range wrt. KBr

EM INSTRUMENT CAMPAIGN

IFM EQM QUALIFICATION

Mechanical qualification

Maximum levels passed with success on sensitive parts

Thermal qualification

Temperature gradient and slopes within required range wrt. KBr

Reference test after qualification

Very stable optical performances after qualification Qualification successful

REFA

µVIBRATION CAMPAIGN

END-TO-END VALIDATION FOR THE INTERNAL CONTRIBUTORS

1 - Mechanical transfer function at IFM interface on EM instrument

2 - IFM sensitivity (wafe front tilt) on IFM EM

3 - Correction rate evaluation with sinus mode (IFA PFM)

INTERNAL CONTRIBUTORS BUDGET REDUCED BY A FACTOR OF 3 COMPARED TO CDR WORST CASE STATUS

PFM SUBUNITS TESTING

INTERFEROMETER

IFM and metrology assembly

Spectral performance evaluation under TVAC

First spectrum acquired with gaz cell and Fabry Perot

Performances in line with CDR budgets, spectral calibration in particular with very promising results

FOCAL PLANE

At room temperature, detectors cooled

Radiometric and geometric performances assessment in line with CDR budgets

Field response characterization will be used for on ground processing

PFM INSTRUMENT

PFM INTEGRATION/ALIGNMENT ACTIVITIES

SUBUNITS LEVEL

FPCA and IFM integration and alignment Telescopes alignment

PFM INSTRUMENT

PFM INTEGRATION/ALIGNMENT ACTIVITIES

SUBUNITS LEVEL

FPCA and IFM integration and alignment Telescopes alignment

SUBUNIT INTEGRATION ON I-OH

Step by step alignment sequence

PFM MECHANICAL QUALIFICATION

Done on I-EM and I-OH separately

Acoustic qualification successful

QS and sine qualification in line with predictions Instrument alignment stable after environment

PFM TESTS

FUNCTIONNAL TESTS

AMBIANT TESTS (results under analysis)

Mainly geometric performance / calibration Confirmation of µvibrations low levels

First IASI-NG raw spectrum!

INSTRUMENT TVAC

Preparation well on-going

Instrument thermal qualification

Fine performances assessment through 5 external BB OGSEs, Gaz Cell and 8 lasers

Solar acquisition through dedicated optical fiber to have a first real spectrum

COMPLETED MILESTONES AND REMAINING ACTIVITIES UNTIL DELIVERY

THANK YOU FOR YOUR ATTENTION !

