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Background: Surface Deformation and Change (SDC)

e 2017 Decadal Survey recommended SDC as “Designated
Observable”

* Interferometric repeat-pass L/S-band SAR at sub-weekly to daily

rates S
. . -- N o ’ ¥
* Resolution ranging from 5m to 15m e / Coastal - #
* Sensitivity to height changes between 1-10mm 24 7l o g ' Processes

* Time series measurements from 1 mm/week to 1 mm/year
* Continuous global monitoring of all land and coastal areas (>70%)
* Noise equivalent sigma® < -20dB and ambiguity < -20dB

Subsidence

* Science and Application Traceability Matrix (SATM) available at
https://science.nasa.gov/earth-science/decadal-sdc

Volcanic

* SDC architectures down-selected from 40+ to ~12 (3/2022) = _ ! Unrest

Forest

* NASA cost is capped so partnerships may be needed to fully Biomass
implement the DS vision

Dynamics
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Background: Surface Topography and Vegetation (STV)

* Global, fine-scale observations of surface topography and vegetation structure (STV) are critical to address key
science questions and applications in Solid EarthsE, EcosystemsV, Cryosphere€, Hydrology", and Coastal Processes®?

e 2017 Decadal Survey recommended Surface Topography and Vegetation (STV) as “Incubator Observable”

* In 2020 NASA conducted a 1-year study to identify STV products needs and science and technology gaps. STV Study
generated the STV Study Report with SATM and list of technology maturation activities (Donnellan et Al., 2021)

STV architectures
and targets

cryosphere

coastal
processes

applications

" hydrology

radar

oot

solid Earth

ecosystems

Aspirational Threshold
STV Product Parameter Median Most Stringent Median Most Stringent
Need Need Discipline Need Need  Discipline
Coverage Area of Interest % 90 95 C,H 55 90 C
Latency Days 5 05 SE 60 1 SE
Duration ~ Years 9 10 SE,C,A 3 SE,V,C,CP
Repeat Frequency Months 0.1 0.03 SE, A 0.2 SE
Horizontal Resolution m 1 1 SE,C,H,A 20 3 SE
Vertical Accuracy m 0.2 0.0 SE,C,H 0.5 0.1 (0
Vegetation Vertical Resolution m 1 05 H A 2 0.2 CP
Bathymetry Max Depth m 25 30 C,CP 10 10 SE,C,CP
Geolocation Accuracy m 1 10 SE,V,HA 5 3 SE,V
Rate of Change Accuracy  cmfyr 5 1 SE,C,A 35 1 SE

Study report: science.nasa.gov/earth-science/decadal-stv
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Can L-band SAR co-fliers meet the SDC + STV needs?

SDC retrieval of 3D deformation vector > Multi-squint InSAR A
with atmospheric correction technique :
> = Co-flier concepts
retrieval of 3D vegetation Multi-baseline PolInSAR for NISAR/ROSE-L
STV > .
L structure and topography / TomoSAR technique J
R AR L T W N AR
N
N |l \
SISO SIMO "~ MIMO
Single-Input/Single-Output Single-Input/Multiple-Output Multiple-Input/Multiple-Output

* ROSE-L (2 L-band satellites, repeat-pass interferometric, 12-day repeat, 6-day separation, 240 km swath)

and NISAR (1 L-band satellite, repeat-pass interferometric, 12-day repeat, 240 km swath)

* Parallel NASA efforts (e.g., via IIP or DSI) are funded to mature radar-based technologies for SDC and STV
such as phase synchronization and timing, lightweight deployable antennas, compact radar electronics
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Orbital configurations of co-flier concepts: SDC perspective

repeat-pass
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Linear system of equations with 3 multi-squint repeat-pass INSAR phase observations and

retrieval of along-track, across-track, and atmosphere components of the 3D deformation vector

MIMO outperforms SIMO and is similar to SISO. Bistatic angle can be 10-20deg depending on
number of looks (100), correlation (0.67), perp. baseline (0m), and deformation accuracy (5mm)
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Orbital configurations of co-flier concepts: SDC perspective

repeat-pass
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* Number of looks is reduced by increasing the InSAR perpendicular (across-track) baseline,
which in turn affects the deformation retrieval accuracy

* Deformation accuracy is affected only slightly by a height of ambiguity (HoA) of 30-60m for a
given reference NISAR geometry and a bistatic angle (15deg)
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Orbital configurations of co-flier concepts: STV perspective

single-pass
B R
SISO
SIMO
MIMO

* Intraditional SAR tomography, design of tomographic aperture (L) and number of uniformly-
spaced spacecrafts (N) based on target vertical resolution (2m) and height of ambiguity (50m)

* SISO = best vertical resolution but worst height of ambiguity; SIMO = worst vertical resolution
and same ambiguity as MIMO. MIMO = good balance between resolution and ambiguity
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Seker and Lavalle, RS 2021
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Design of STV co-flier concepts: Histogram tomography

L-band UAVSAR data over tropical forests (Gabon) with 20m baseline after multi-looking to about 20m sample size

INSAR histogram function

M pixels, multi-looked cell
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Design of STV co-flier concepts: Histogram tomography

Lidar-derived forest height of 3m

= UAVSAR InSAR HH histogram
——— UAVSAR InSAR HV histogram
—— UAVSAR InSAR VV histogram
----- LVIS lidar waveform (normalized)
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—— UAVSAR InSAR HV histogram
—— UAVSAR InSAR VV histogram
------ LVIS lidar waveform (normalized)

lidar z,

O L.

-inf -20.00 -16.99
L-band backscatter [dB]

L-band UAVSAR data with 40m baseline and 1.8m x 1m resolution multi-looked
down to 20m sample size and compared with lidar waveforms and tree height
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Design of STV co-flier concepts: Histogram tomography

single-pass
* Single-baseline SAR interferometer 20
o T W with variable perpendicular baseline
* Assumes dominant scatterer in the
single-look resolution cell:
SISO performance driven by signal-to-clutter  _ 15
ratio (SCR) = =
e Vertical resolution requirement % -10g
B R defined by absolute value (2m) or = =
relative to maximum tree height (15%) £ 10 8 o
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Orbital configurations of co-flier concepts: STV perspective

single-pass

SIMO
> e -gz- So.
MIMO

Doppler decorrelation between two SLCs acquired with different squinted geometries poses
a limit on the along-track (AT) baseline similarly to the spectral shift along range

Critical along-track baseline for a transmitter and a receiver located on the same orbit with
range vectors forming a bistatic angle ¢,, depends on multi-static mode

e STV via histogram
tomography can tolerate
only very small (<0.5deg)
bistatic angles

e Other tomographic
algorithms may be robust
to doppler decorrelation
(similarly to range
spectral decorrelation)
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Orbital configurations of co-flier concepts: SDC + STV needs

* One co-flier
* SDC: repeat-pass multi-squint b,, = 250km ba b1 e

(SIMO/MIMO), b, = 0m, 3D deform, no o~ — T 7
atmosphere

* STV option 1: single-pass single-baseline o,
HistTomo b, = 2.5km (SIMO/MIMO), b,,< 10km v

* STV option 2: pair-wise single-pass, drift co-flier — —
to implement tomographic stack over time SDC-only STV-only
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* Two co-fliers
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Orbital configurations of co-flier concepts: SDC + STV needs

topo + veg (1 baseline)
OR

3D deformation (no atmosphere)
topo + veg (3 baseline)

(6 baselines)
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* N>3 co-fliers
* Add co-fliers with large along-track or across-track baseline to benefit either or both SDC and STV
* Constraints on orbital dynamics leads to time-varying along-track and across-track baselines
* Opportunity for fractionated SAR
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A note on vertical and horizontal resolutions of tomograms

* The projection of resolutions along look direction (r) and perpendicular to look direction (n) onto vertical (z) and horizontal (x)
axes depends on look angle and relative size of r and n resolutions (Seker and Lavalle, RS 2021)

* Vertical resolution can be affected by range bandwidth, and horizontal resolution can be affected by tomographic aperture
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Take-away messages

1. SDC and STV address the same science disciplines with complementary
goals so it makes sense to look for a joint mission concept

2. SDC aims to repeat-pass, long azimuth and short range baselines; STV aims
to single-pass, short azimuth and long range baselines

3. Possible concept is with two or more co-fliers clustered at 250 km along-
track from transmitter and variable across-track baselines between co-fliers

4. For both SDC and STV, SIMO performs worse than SISO and MIMO but SIMO
remains an attractive solution for system implementation

5. Partnership tech demos with NISAR or ROSE-L would pave the way to
uninterrupted SDC time-series and unprecedented STV measurements



