Optical model for the Baltic Sea with an explicit CDOM state variable: a case study with Model ERGOM

Thomas Neumann¹, Sampsa Koponen², Jenni Attila², Carsten Brockmann³, Kari Kallio², Mikko Kervinen², Constant Mazeran⁴, Dagmar Müller³, Petra Philipson⁵, Susanne Thulin⁵, Sakari Väkevä², and Pasi Ylöstalo²

¹ IOW, ² SYKE, ³ Brockmann Consult GmbH, ⁴ SOLVO, ⁵ Brockmann Geomatics AB

ESA Baltic+ SeaLaBio project

ESA Living Planet Symposium 2022, Bonn, Germany

BROCKMANN CONSULT

Baltic Sea from space: A river estuary in spring time

S2 MSI RGB 2017-05-04

Highly dynamic coastal areas

Not enough information about fluxes in the Baltic Sea level

LPS 2022 |May 23rd, 2022, Bonn, Germany | From Preprocessing to Implementation

CDOM in Ecosystem Modelling

Importance of CDOM

• Impacts primary production due to its absorption effect on PAR

\circ Sources of CDOM

- In coastal seas, CDOM originates from terrestrial sources predominantly
- Causing spatial and temporal changing patterns of light absorption which impacts phytoplankton growth

• Ecosystem Modelling

- Traditional approach: exploiting the relationship between salinity and CDOM,
- Often missing the dynamic spatio-temporal pattern of terrestrial inputs
- → use of EO products to define boundary conditions of CDOM concentrations in an ecosystem model of the Baltic Sea (ERGOM).

\circ Model adaptation

- Introduction of an explicit CDOM state variable in the ecosystem model
- CDOM concentrations in riverine water derived from EO products serve as forcing

ERGOM Model

CDOM salt approximation replaced by explicit state variable

LEIBNIZ INSTITUTE FOR BALTIC SEA RESEARCH

통물

SYKE

BROCKMANN GEOMATICS Sweden AB

SO

 \bigcirc

.

ERGOM radiation model

Radiation model for PAR in ERGOM $(I(z) = I_0 \exp(-Kz))$ Baltic radiation model: $K_{PAR} = k_w + k_c \cdot ChI + k_{POM} \cdot POM + k_{DOM} \cdot DOM + K_{CDOM}$ $K_{CDOM} = f(salt);$ lack of data

Baltic radiation model (SeaLaBio): $K_{CDOM} = k_{CDOM} \cdot CDOM$

 $\frac{dCDOM}{dt} = -pb * CDOM$

 $pb = PB_0 * I(z)$

Slow degradation (*pb*) due to light (photobleaching)

Prerequisite: High quality CDOM boundary conditions (river) becomes possible due to SeaLaBio

Utilization of EO based aCDOM values as model forcing data

Processing steps

- 1. Sentinel-2, C2RCC-processor and local calibration (data from Finland)
- 2. CDOM values extracted from 80 estuaries representing ERGOM input locations around the Baltic Sea
- 3. Monthly means derived (years 2016-2019)
- Interpolation of time series was used to derive data for winter season

CDOM Model Difference

New ERGOM simulated CDOM absorption map, using satellite based CDOM as a new input state variable. Difference to salinity approximation for CDOM. Large impact in northern Baltic Sea and river estuaries

In situ CDOM vs. ERGOM CDOM derived from salinity at monitoring stations in the Northern Baltic

SO

BROCKMANN CONSULT

In situ CDOM vs. ERGOM CDOM derived from salinity at monitoring stations in the Northern Baltic

SO

BROCKMANN GEOMATICS

Light penetration

Station in the Bay of Bothnia, annual mean 2018 Blue: explicit CDOM; Red: Salt parametrization

Consequence: Primary production reduced in deeper water layers

Bottom oxygen

Blue: explicit CDOM; Red: Salt parametrization

Modified biogeochemical cycles result in increased bottom oxygen

Model Performance

black: a_y from CDOM green: a_y from salt red: observations

LPS 2022 | May 23rd, 2022, Bonn, Germany | From Preprocessing to Implementation

Impact on biogeochemistry

Climatology 1990-2019

Spring bloom delay by 14 days

LPS 2022 | May 23rd, 2022, Bonn, Germany | From Preprocessing to Implementation

Use of EO for monitoring carbon fluxes

- CDOM absorption improved in the northern Baltic ullet
- Impact of CDOM on the ecosystem is via PAR \bullet
- CDOM changes light penetration depth and in turn primary production \bullet
- Owing to complex and non-linear relationships, a quantitative response of the ecosystem hardly can be predicted
 - Less PAR -> less PP -> more nutrients left -> more PP (upper layer)
 - New equilibrium?
- A careful validation of **all** model variables is needed
 - E.g., the altered light climate may require a re-calibration of phytoplankton assimilation parameters

BROCKMANN GEOMATICS

EO based method for TOC load estimation

- River runoff from ERGOM
- Monthly aCDOM values for rivers from EO
- Empirical relationship between aCDOM and TOC (based on Finnish data)

Annual TOC loading

Annual TOC loading according to the SeaLaBio method and PLC - the eight biggest rivers* in 2017-2019

12

Summary

CDOM absorption improved in the northern Baltic

- + CDOM absorption independent on model salt uncertainties
- + Differences of individual catchments
- + Annual cycle
- + Realistic CDOM -> improved light climate
- Model complexity increased
- Sophisticated data base necessary

CDOM changes light penetration depth and in turn primary production

A thorough validation of all model variables is needed E.g., the altered light climate may require a re-calibration of phytoplankton assimilation parameters

Available info, data and sofware

New water quality information and EO methods available

- Monthly CDOM maps (2016-19) are available for public use on TARKKA: www.syke.fi/tarkka/en
- Geoscientific Model Development 14, 5049–5062, 2021, https://doi.org/10.5194/gmd-14-5049-2021
- Baltic+ AC satellite data processor available in GITHUB

Optical model for the Baltic Sea with an explicit CDOM state variable: a case study with Model ERGOM (version 1.2)

Thomas Neumann[®], Sampsa Koponen², Jenni Attila², Carsten Brockmann³, Kari Kallio³, Mikko Kervisen², Constant Mazeran³, Dagmar Müller³, Petra Philipson³, Susanne Thulin³, Sakari Väkevä[®], and Pasi Ylöstalo² ¹Lebrit: Institute for Batic Sea Research Warnemünde, Seestr: 15, 18119 Rottock, Germany ³The Finnis Environment Institute, Latokaranookaak 11, 00700 Helsneik, Finland ³Brockmann Consult Gittber, Max Planck-Str. 2, 21502 Geestmant, Germany ⁹SOLVO: 3 rue Samt-Antoine, 00600 Antibes, France ⁹Brockmann Geomatics Sweden AB, Tornhamnspatan 30, 164-40 Köza, Sweden Consension Theorem Names Names Names Research do

For more information

- Visit: https://www.syke.fi/projects/BalticSeaLaBio
- Or contact: Sampsa Koponen SeaLaBio Project Coordinator sampsa.koponen@syke.fi

