

living planet symposium BONN 23-27 May 2022

TAKING THE PULSE OF OUR PLANET FROM SPACE

EUMETSAT CECMWF

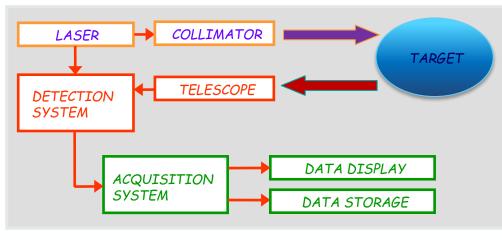
Experimental tests for the detection and characterisation of Plastic Marine Litter by means of fluorescence LIDAR technique

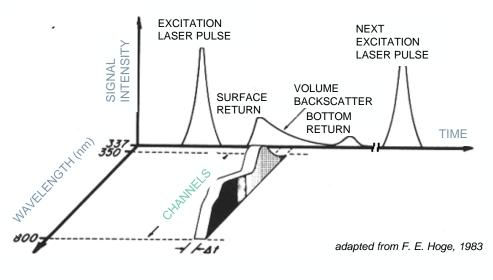
Valentina Raimondi^{1*}, Lorenzo Palombi¹, Robin DeVries², Alessandra Ciapponi³, Paolo Corradi³

¹ CNR-IFAC (IT), ² The Ocean Cleanup (NL), ³ ESA ESTEC (NL)

25/05/2022

ESA UNCLASSIFIED – For ESA Official Use Only




The LIDAR technique

- Light Detection And Ranging
- Optical counterpart of the RADAR
- Active remote sensing technique
 - Water column penetration
 - Day and night operation
 - Low spatial / temporal resolution
 - > Eye safety constraints
- Fluorescence LIDAR

→ THE EUROPEAN SPACE AGENCY

The ESA-funded BLUE project

Aims and scope: Investigate the potential of diverse LIDAR techniques – FLUORESCENCE, elastic backscatter, Brillouin-Rayleigh, Raman - to address plastic litter issue at sea, with an emphasis on plastics under the water surface and the characterisation in terms of material.

BLUE project:

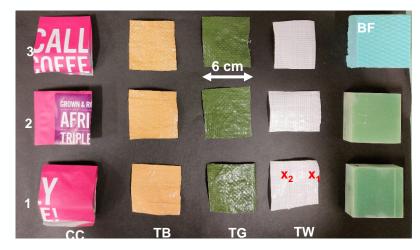
«Brillouin – backscatter - fluorescence LIDAR research for Underwater Exploration of marine litter» (Sept. 2020 – on going)

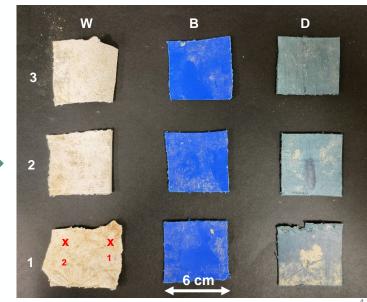
- Early technology development projects funded by ESA in the frame of Discovery campaign on Plastic Marine Litter
- **Prime**: Institute of Applied Physics of the National Research Council (CNR-IFAC)
- Partners:
 - The Ocean Cleanup,
 - University «La Sapienza» of Rome -Chemical Engineering Dept.

Samples: raw, used and ocean-harvested plastics

Used/weathered plastics

HDPE fabric with LDPE coating, coffee bag, foam




Raw plastic samples

- HDPE (High Density PolyEthylene)
- PA6-XT (PolyAmide 6 (Nylon))
- XPS (eXtruded Polystyrene)
- PET (PolyEthylene Terephthalate)
- PVC (PolyVinylChloride)
- PP (PolyPropylene)

Ocean-harvested macroplastics (HDPE)

Beach-harvested plastic debris (< 5 cm) and plastics fibers

→ THE EUROPEAN SPACE AGENCY

Conclusions

- Raw plastics, weathered and ocean-harvested plastics showed meaningful fluorescence emission, which was detected by using an in-house developed fluorescence LIDAR (under controlled conditions in the laboratory, ambient light, from 11-m distance)
- Fluorescence signal can be easily detected also when plastics is not floating on the surface and decoupled from both water Raman signal and CDOM fluorescence contribution
- Plastics fluorescence spectral behaviour lays the basis for the characterisation of different types of plastics, even ocean- and beach-harvested plastics (not pre-treated)
- Preliminary tests on microplastics (< 1 mm) and plastics fibers suspended in water provided very
 promising results for their detection
- LIDAR measurement campaign at sea planned in June 2022
- See also poster on airborne backscatter LIDAR data acquired over the Great Pacific Garbage Patch (DAY 3 25/05/2022 Board #334) !!

Thank you!

Any question welcome ...

Dr. Valentina Raimondi - CNR-IFAC, email: v.raimondi@ifac.cnr.it

This study was funded by the Discovery Element of the European Space Agency's Basic Activities grant number: 4000132184/20/NL/GLC.

