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Debris

Many constituents influence the sea surface

How to detect 
Plastic Debris 
from sea spray, 
dust, foam, 
surfactants, glint?

McGraw Hill Textbook



Chuanmin Hu:  Types of Floating Matter 
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Microplastics < 5mm



Microplastics in the Great Pacific Garbage Patch

• 8% of the total mass but 
• 94% of the estimated 2 trillion floating pieces
• up to 1,000,000 pieces km-2. 



• From a radiative transfer perspective, it is still unclear 
at what concentrations surface floating microplastics
will have a detectable influence on sea spectral 
reflectance and the ocean refractive index.  

• a feasibility study of remote detection of surface 
microplastics:

• different surface particle properties
• uncertainties in atmospheric correction 
• with hyperspectral and polarimetric approaches 



UNDERWAY (Two different models) UNDERWAY (Rogers Method)
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Forward model = radiative transfer simulation
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Volumes represent measurement, model 
uncertainty
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We want to know how uncertainty in observation space maps to state space



Mapping uncertainty assessed with Jacobian 
matrix (K)– sensitivity of model to perturbation
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This is the “Rodgers method” of information content assessment

Simulated uncertainty    Jacobian Measurement uncertainty   Prior knowledge

Must test this for an ensemble of 
scenes: parameter values

Best case scenario

Represents ‘known unknowns’ and 
assumes a perfect retrieval algorithm

Doesn’t account well for multiple 
potential solution – just represents 
sensitivity surrounding state/obs
space. 

Good for high dimension cases, 
simple to implement

From: 10.5194/amt-11-3935-2018



Progress by Kirk Knobelspiesse

• a python example notebook of how the Rodgers information 
content analysis works

• Implementation of approach using simulation

• Code to be uploaded
• https://github.com/knobelsp

https://github.com/knobelsp


Benchmark Comparison of two models:
1) Simplified RT model (Ibrahim)
2) Full radiative transfer simulations 

with polarization (Chowdhary)

Radiative Transfer Simulations  - Chowdhary et al. 2019
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Simplified Radiative Transfer Approach with “Wet” Microplastic Reflectance

We simulated the TOA reflectance as follows: 𝜌𝜌𝑇𝑇𝑇𝑇𝑇𝑇 = 𝐹𝐹(𝑃𝑃𝑃𝑃, ,𝑅𝑅𝑅𝑅,𝑊𝑊𝑊𝑊,𝑊𝑊𝑊𝑊,𝑂𝑂3, 𝑐𝑐𝑐𝑐𝑐 − 𝑎𝑎,𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝 ,𝑓𝑓𝑓𝑓𝑓𝑓, 𝜏𝜏𝑝𝑝)

𝜌𝜌𝑇𝑇𝑇𝑇𝑇𝑇 = (𝜌𝜌𝑟𝑟 + 𝜌𝜌𝑝𝑝+ 𝑇𝑇𝜌𝜌𝑝𝑝𝑠𝑠𝑟𝑟𝑠𝑠) × 𝑇𝑇𝑔𝑔𝑝𝑝𝑔𝑔𝑝𝑝 × 𝑇𝑇𝑔𝑔𝑝𝑝𝑔𝑔𝑔𝑔

𝑇𝑇𝜌𝜌𝑝𝑝𝑠𝑠𝑟𝑟𝑠𝑠 = (1 − 𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝) × 𝑇𝑇𝜌𝜌𝑔𝑔 + 1 − 𝜌𝜌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝 × 𝑇𝑇𝜌𝜌𝑤𝑤 + 𝑇𝑇𝜌𝜌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝
𝑇𝑇𝜌𝜌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝 = 𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝 × 𝜌𝜌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝 × 𝑡𝑡𝑝𝑝𝑔𝑔𝑔𝑔

𝑇𝑇𝜌𝜌𝑤𝑤 = 𝜌𝜌𝑤𝑤 × 𝑡𝑡𝑝𝑝𝑔𝑔𝑔𝑔
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Example condition

Run 100,000 cases varying pressure, wind speed, relative 
humidity, ozone, optical depth, fine mode fraction, water 
vapor, chl-a,plastics fraction, and orbit geometries



Microplastics Influence Near Infrared Reflectance and Aerosol 
Retrieval at the TOA
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solz = 30
relaz =130
senz = 10Increasing microplastics influences the Near Infrared 

Reflectance at the Top of the Atmopshere and Aerosol 
Retrievals that use the ratio of  869 and 748 nm bands

Example condition

Amir Ibrahim, NASA GSFC



Bryan Franz



Initial simulations show ~0.1% fractional coverage of microplastics produce 
>10% error in aerosol retrievals (50 times higher than measurements) 

For this specific condition, 𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝 < 0.1% has no effect on 
either the aerosol optical depth or the fine-mode fraction.

1000 different simulations showing an increase in error 
in retrieval of aerosol optical depth

Field data showing highest fraction of a 1 km2 pixel covered by surface borne microplastics is 0.002% --
50 times less than would be detectable in aerosol retrieval



Plastic particles may artificially decrease the 
angstrom coefficients



What fraction of microplastics is detectable?

• Initial simulations suggest that microplastics could be detectable in atmospheric retrievals if they 
represent greater than 0.001 fraction of the sea surface using standard approaches 

• For the scale of 1 km2 pixel,
– Field data up to ~20 m2/pixel (1,000,000 pieces/km2)
– 0.00002 highest fraction microplastics observed
– Initial analysis suggests microplastics would need to be ~50x more concentrated at the sea 

surface than we find in net tows

• For smaller scale pixels
– We do not know how patchy and concentrated microplastics can get along fronts. 



Is Plastic Accumulation Visible in Ocean Color 
Imagery from the GPGP?

Lebreton et al 2018



Impact of Wind on the Aerosol Retrievals



Visualizing the Seasonal Asian Aerosol Plume

• Clear histogram shift 
towards higher AOT 
values during peak 
Asian aerosol input 
months



MODIS Aerosol Anomalies in “Great Pacific Garbage Patch” (GPGP)

Example of MODIS Aqua Anomalies in GPGP Simulations of GPGP from Lebreton et al. 2018



Some initial results:
NIR anomaly trend over 18 year time series

• Parts of GPGP show 
increasing NIR 
anomalies during 18 
year MODIS time 
series, but not all

N
IR anom

aly slope (yr −
1)



Stay Tuned for Polarimetry Results
To the extent floating materials modify the surface-averaged refractive index of 
seawater, the polarization signatures of the TOA signal will be first and foremost affected 
around the specular reflection region, as described by the Fresnel laws



Sensitivity studies underway to investigate the concentrations of floating microplastics needed to appreciably 
change the polarimetric retrieval of surface-averaged refractive indices 



THANK YOU
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