

Spectral responses meet AI to detect Marine Litter

Mehrdad Moshtaghi, Robrecht Moelans, Marian-Daniel Iordache

Living Planet Symposium – May 2022

CONTENT

Artificial accumulation zone of litter

Litter detection: Binary approach

RF

SVM

NB

- 9 classes considered: 'grass', 'soil', 'tree', 'water', 'cement tiles', 'painted surface', 'oxidated metal', 'plastic', 'wood'
- 22.688 points extracted from 32 images of one flight (over land)

emote sen

	Precision	Recall	F1-score	Support
Grass	0.93	0.88	0.91	1074
Soil	0.91	0.95	0.93	1281
Tree	0.91	0.95	0.93	1244
Water	1.00	1.00	1.00	1109
Cement	0.88	0.88	0.88	153
Painted surface	0.90	0.88	0.89	528
Oxidated metal	0.91	0.95	0.93	215
Plastic	0.94	0.90	0.92	1363
Wood	0.86	0.87	0.86	690
Accuracy			0.93	7657

Points distribution per class

Classified image

Thresholding + erosion/dilation to avoid plastic over-detection in shadowed areas

The RF classifier applied on water images

No post-processing

Dark pixels removed

Bridge campaigns (PLUXIN)

- 3 cameras (from left to right):
- HR RGB camera
- Multispectral camera 10 spectral bands in VIS-NIR
- Xenics SWIR camera

Pointing a same location

RGB auto exposure image every 3 sec

Micasense dual auto focus / auto exposure image every 5 sec 16 bit TIFF

SWIR 12,5mm lens Aperture 2.5 image every 5 sec

Al on RGB images

- Sort out input (750 input images with object presence in the water)
- Random patch extraction from each image to have same size images
- Annotation with one category named litter
- Data augmentation
- Divide data set to train/validation with 80-20 percentage
- Register both train and validation data set into detectron2
- Faster RCNN (Region-Based Convolutional Neural Network) used for training
- Results on validation evaluated based Average precision metrics
- Average precision 50 obtained at 88.74 percent
- Inference results with detectron2 Visualizer

VITO remote sensing

VITO remote sensing

Aligned Images

Object detection on constructed RGB

A marine litter satellite mission ?

Marine litter conceptual design study

- Identify high impact marine plastic use cases
- Assessed the feasibility of monitoring them from space
- Work out a suitable instrument & mission concept

Landfills

Primary use cases

Beach Litter

Coastal windrows

Major source of marine litter Many are unknown (80% of landfills illegal in SE Asia) Majority – 84% – of all beach rubbish is made of plastic. Plastic fragments, fishing gear and packaging are most common aggregations of floating litter, seafoam, seaweeds, plankton a few m to several km long, and up to 100 m wide

- insufficient info available from field data
- Support policies
- understanding mass balance and pathways of plastics

Consolidated requirements

characteristics		consolidated	unit
Spatial resolution	GSD	1-3	m
Coverage	Swath	10	km
Spectral	range	400-2400	nm
Spectral	bands	20-26 bands identified	
Spectral resolution	FWHM	2.5-20	nm
Radiometric resolution	average SNR	High (200)	
Temporal		monthly/seaso nal	

Selected coastal zones 11km swath + 30° roll pointing

total imaging	30000	km²/day
with pitch movement	9000	km²/day
data volume	1326	Gbit/day
compression ratio	2.32	
Svalbard downlink	570	Gbit/day

areas in Europe, Caribbean, South-East Asia & Japan

https://remotesensing.vito.be/case/marine-plastic-litter

THANK YOU

