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Extremes and the biosphere



Climate

Type of observed change
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Type of observed change since the 1950s

¢) Synthesis of assessment of observed change in agricultural and ecological drought

and confidence in human contribution to the cbserved changes in the world'’s regions
Type of observed change

in agricultural and ecological drought

O Increase (12)
. Decrease (1)

2 | Low agreement in the type of change (28)

O Limited data and/or literature (4)

Confidence in human contribution
to the observed change
see High
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Type of observed change since the 1950s

extremes are on the rise

IPCC ARG6 WGl reference regions: North America: NWN
(North-Western North America, NEN (North-Eastern North
America), WNA (Western North America), CNA (Central North
America), ENA (Eastern North America), Central America:
NCA (Northern Central America), SCA (Southern Central
America), CAR (Caribbean), South America: NWS (North-
Western South America), NSA (Northern South America), NES
(North-Eastern South America), SAM (South American
Monsoon), SWS (South-Western South America), SES (South-
Eastern South America), SSA (Southern South America),
Europe: GIC (Greenland/Iceland), NEU (Northern Europe),
WCE (Western and Central Europe), EEU (Eastern Europe),
MED (Mediterranean), Africa: MED (Mediterranean), SAH
(Sahara), WAF (Western Africa), CAF (Central Africa), NEAF
(North Eastern Africa), SEAF (South Eastern Africa), WSAF
(West Southern Africa), ESAF (East Southern Africa), MDG
(Madagascar), Asia: RAR (Russian Arctic), WSB (West
Siberia), ESB (East Siberia), RFE (Russian Far East), WCA
(West Central Asia), ECA (East Central Asia), TIB (Tibetan
Plateau), EAS (East Asia), ARP (Arabian Peninsula), SAS
(South Asia), SEA (South East Asia), Australasia: NAU
(Northern Australia), CAU (Central Australia), EAU (Eastern
Australia), SAU (Southern Australia), NZ (New Zealand), Small
Islands: CAR (Caribbean), PAC (Pacific Small Islands)Figure
SPM.3a from AR6 WGI Summary of Policymakers, IPCC.
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What are the effects on the carbon cycle?
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von Buttlar, J., Zscheischler, J.,... & Mahecha, M. D. (2018). Impacts of
droughts and extreme-temperature events on gross primary production and
ecosystem respiration: a systematic assessment across ecosystems and
climate zones. Biogeosciences, 15(5), 1293-1318.



Some overarching question:

n-Dim Climate System n-Dim Terrestrial
Biosphere

e How to consider that events originate from multivariate/compound events?
e Why do we see sometimes extreme responses, why sometimes not?

e Can similar climate extremes lead to the different responses? If so, what is controlling that?



Based on analysis ready data cubes



Variable 2

What are multivariate extremes then?

(a) (b)

Variable 2

Univariate
KDE

+ Data

Variable 1

Variable 1

Flach, M., Sippel, S., ... & Mahecha, M. D. (2018). Contrasting biosphere responses to hydrometeorological extremes
revisiting the 2010 western Russian heatwave. Biogeosciences, 15(20), 6067-6085.



Mahecha., Gans., ... & Reichstein

(2022). Earth System Dynamics, 11,
201.234

Variable 2

(b)

Variable 1

Flach., ... & Mahecha, M. D. (2018).
Biogeosciences, 15(20), 6067-6085.







Impacts on the carbon cycle
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Flach, M., et al. (2021). Biogeosciences, 18(1), 39-53.
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GPP anomalies are positive and negative

Gross primary productivity Affected ecosystem

Reduced
Others

Enhanced

Flach, M., et al. (2021). Biogeosciences, 18(1), 39-53.
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lobal responses of GPP to extremes

Growing season temperature

Duration

Explaining with ML
what determines the
direction of impacts

Land cover

Surface moisture during event

Radiation during event

Temporal distance to peak growing season
Temperature during event

Flach, M., et al. (2021). Biogeosciences, 18(1), 39-53.
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Land Cover = Mixed forest

Land Cover = Deciduous Broadleaf forest
Land Cover = Evergreen Needleleaf forest
Land Cover = Deciduous Needleleaf forest
Land Cover = Evergreen Broadleaf forest
Land Cover = Woody savannas

Land Cover = Savannas

Land Cover = Grasslands

Land Cover = C3 Cropland/Natural vegetation mosaic
Land Cover = C3 Croplands

Land Cover = C4 fraction Cropland/Natural vegetation mosaic
Land Cover = C4 fraction Croplands

Land Cover = Open shrublands

Land Cover = Closed shrublands

Land Cover = Permanent wetlands

Land Cover = Urban and built-up
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[he inverse approach



The backward idea to event detection
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n-Dim Climate System n-Dim Terrestrial
Biosphere

Forward: Detect extremes in the climate system — understand anomalous vegetation responses

Backward: Detect extremes in the biosphere — understand driving climate anomalies



The backward idea to event detection

e Dimensionality reduction of relevant land surface data
e Interpretation of the impacts and dynamics
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Low-dimensional land surface anomalies
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Kraemer, G., Camps-Valls, G., Reichstein, M., & Mahecha, M. D. (2020). Summarizing the state of the terrestrial biosphere in few dimensions.
Biogeosciences, 17(9), 2397-2424.



Potential and limitations of remote sensing



Relevant to address regional issues

David Montero (in prep), Poster C1.07 ML4Earth (Thursday)
visualization Maximilian Sochting via lexcube.org
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GPP[gC m2d]

u u u Camps-Valls, G., Campos-Taberner, M., Moreno-
I m I tS Of re m 0 t e S e n S I n Martinez, A., Walther, S., Duveiller, G., Cescatti, A.
\Mahecha, M.D., ... & Running, S. W. (2021). A unified

vegetation index for quantifying the terrestrial biosphere.
Science Advances, 7(9), eabc7447.

Median time series over the Hainich EC tower Scatterplot of the kNDVI
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Montero, D., ... & Wieneke, S. (in prep)



Limits of remote sensing
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Pabon, D., et al. (2022). IEEE Transactions on

Geoscience and Remote Sensing.
10.1109/TGRS.2022.3152272
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https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=36
https://doi.org/10.1109/TGRS.2022.3152272

Carbon uptake potential
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Impacts of extremes depend on Biggest challenge is probably
ecosystem structure and diversity disentangling temporal sequences

VAV,

Higher spatial and spectral resolutions Machine learning will help, once it is
will not solve all challenges able to disentangle complex dynamics
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