

Climate driver 1

Diagnosing and analysing compounding hazard-impact pathways

Bart van den Hurk Jakob Zscheischler & DAMOCLES team members

Deltares

A few examples

Near-flooding event Jan 2012: a compound event

2016 crop failure in France

- Not forecasted
- What caused the crop loss?

2016 crop failure in France

Main drivers

Deltores Ben-Ari et al. (2018) *Nature Communications*

Compound weather and climate events

...refer to the **combination of multiple drivers and/or hazards** that contributes to **societal or environmental risk**.

Deltores Zscheischler et al. (2018) *Nat Clim Change;* Zscheischler et al. (2020) *Nat Rev. Earth & Env.*

Typology of compound events

Climate driver 1

A typology of compound events

- 1. Preconditioned events
- 2. Multivariate events
- 3. Temporally compounding events
- 4. Spatially compounding events

Check for updates

A typology of compound weather and climate events

Jakob Zscheischler ^{1,2}[×], Olivia Martius^{1,3,4}, Seth Westra⁵, Emanuele Bevacqua⁶, Colin Raymond^{7,8}, Radley M. Horton ⁹, Bart van den Hurk^{10,11}, Amir AghaKouchak ^{12,13}, Aglaé Jézéquel^{14,15}, Miguel D. Mahecha ^{16,17}, Douglas Maraun ¹⁸, Alexandre M. Ramos ¹⁹, Nina N. Ridder ²⁰, Wim Thiery²¹ and Edoardo Vignotto²²

1. Preconditioned events

One or more hazards can cause an impact, or lead to an amplified impact, only because of a pre-existing, climate-driven condition.

Deltares Zscheischler et al. (2020) *Nature Rev. Earth & Env.*

False spring

2. Multivariate events

Co-occurrence of multiple climate drivers and/or hazards in the same geographical region, causing an impact.

Deltores Zscheischler et al. (2020) *Nature Rev. Earth & Env.*

Examples of multivariate events

- Concurrent drought & heat
- Concurrent wind & precipitation extremes
- Compound flooding

Land Flooding

storm Surge

Multivariate compound events

highest 10%

Multivariate compound events

highest 10%

3. Temporally compounding events

Succession of hazards that affect a given geographical region, leading to, or amplifying, an enhanced impact.

Deltares Zscheischler et al. (2020) *Nature Rev. Earth & Env.*

Katia, Irma, Jose

4. Spatially compounding events

Multiple connected locations are affected by the same or different hazards within a limited time window, thereby causing an impact.

Deltores Zscheischler et al. (2020) *Nature Rev. Earth & Env.*

Concurrent impacts of El Niño on crop yields

Typology of compound event impacts

Climate driver 1

Compound event classification

- Categorizes different links between modulators, drivers & hazards
 - Z2020 classification helps understanding & analysis "Climatic Impact Drivers"
- Why care about it when analysing climate impacts?
 - Classification may help **impact assessment**

Impact application domains found in literature

- (Impact) forecasting
 - (Extreme) weather, hydrological extremes
- Emergency response
 - Training, informed response strategies
- Risk management
 - Standard operation protocols, exposure mapping
- Spatial planning/infrastructure design
 - Mapping hazard/exposure/vulnerability, climate change impacts
- Process understanding
 - Theory & model development, observational strategies

Some examples

Impact forecasting

Risk management

Wild fire forecasting (Nunes et al, 2019)

Heavy precipitation and dam security (White et al, 2019)

Some examples

Infrastructure planning

Power disruption (Turner et al, 2019)

Emergency response

Correlated hazards (Jongman et al, 2014)

What's in it for (space) observations?

Climate driver 1

Observational considerations

- Observing impacts...
 - Flooding, crop impacts, storm damage, surge impacts on erosion
- ... that allows attribution of their drivers
 - Synchronized with data on hydrometeorological hazards
- ... enables model development and scenario analysis
 - E.g. Digital Twins allowing conditioning on multiple drivers
- ... and contributes to the sparse data set on impacts
 - Weak spot in observational coverage, including links to exposure/vulnerability
- Think of compounding observation systems
 - Space, meteo, in situ, model scenarios: a multihazard, multi-impact and multifunctional compound data lake

Online presence

Blog

blog parent

Website: damocles.compoundevents.org

Blog: compoundevents.org/category/blog/

BLOG, STSM Potential effects of climate change on fires in the Balkan

Guest blog by Milan Gazdic, University of Belgrade (Serbia) In Montenegro, forests and forest land occupy approximately 70% of the territory of the country. Montenegro forests provide many benefits and services to society, including clean water and air, recreation, wildlife habitat, carbon storage, climate regulation, and a variety of forest products. Climate influences the ... Continue reading

