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Evapotranspiration (ET) can be derived using various models based on thermal infrared data

-> uncertainty in Ts:

-> large number of models     ->      diversity of algorithms  => uncertainties

- albedo 
-> lots of other data required :            - vegetation density              various sources of data   => uncertainties

- meteorological data

Many unknowns remain concerning the uncertainties in the derivation of ET, in particular for discriminating 
uncertainties from input data and models

- instrument
- atmosphere



Models of Latent Heat Flux (LE)
[see Lagouarde and Boulet 2016]

->      Contextual model :  LE ~  EF x (Rn – G)

EF = evaporative fraction  <- Ts vs. albedo or NDVI

albedo, emissivity, Ts, 
Rn = net radiation  <- solar irradiance

atmospheric irradiance ex: S-SEBI (Roerink et al. 2000)

G = ground heat flux  <- Rn, NDVI, fCOVER



ESA experiment in Grosseto (Italy) in support of the LSTM program : July 2018

Airborne acquisition with TASI (TIR) 
and HyPLANT (VNIR, SWIR) sensors
3.5 m resolution at the ground

Agricultural area (~10 X 10 km)



Data: Grosseto experiment, July 2018

–> TASI data provided by ESA
Surface temperature and emissivity :                –> TASI data re-processed at Univ. of Valencia

–> NDVI 
Surface spectral reflectances :     –> HyPlant data –> albedo 

–> LAI 
–> roughness

–> ERA 5 reanalysis  (ECMWF – COPERNICUS Climate change Service)
Incident radiations –> SoDa Meteosat (COPERNICUS  Atmosphere  Monitoring Service)

–> COSMO6-REA Reanalysis (Bohn University) 
–> in situ data (2 instruments)

–> ERA 5
Air temperature and wind speed –> COSMO6-REA Reanalysis (Bonn University)

–> in situ data (2 locations)



Uncertainty analysis  :  we use the EVASPA concept (Gallego et al. 2013, Olioso et al. 2018, Allies et al. 2020) 

->  computes ET as an ensemble estimate (ensemble mean)

-> computes uncertainties from the variability of calculated ET depending on 

-> Uncertainty is defined as the standard deviation of the ensemble simulations
(or the range of variations as in Mira et al., RSE 2016) 

-> Uncertainty related to the impact of one variable or model is computed by keeping 
only the variations related to this model or variable 

-> We compute two levels of uncertainty: (Allen et al., 2011, Blatchford et al., RSE 2019).

- novice uncertainty = full range of variations
- expert uncertainty = reduced range of variations depending on prior-information on accuracy

-> from various sources of data 
-> by combining various model

-> model
-> inputs 



Example -> Meteorological variables : solar radiation
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Surface temperature data from TASI

Two sets of data were provided based on the TES algorithm
- one directly from ESA (CzechGlobe processing)
- three processing at University of Valencia :

-> LIRE radiosoundings (on site)
-> GSW profile (atmospheric model …)
-> NCEP profile (US model)

We used data on the 18th and the 20th at :        - around  10h UTC (= 12h CEST)   ->  morning 
- around  12h UTC (= 14h CEST)    ->  midday

notation: D1H1, D1H2, D2H1, D2H2

However, results were very similar for each days (and even each acquisition time) -> D2H2
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ET uncertainty break-down, D2H2
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Summary

- uncertainty in ET is large, up to 1.5 mm.d-1 (for D2H2 and when expressed as standard deviation)

- uncertainty is significantly lower in the expert case than in the novice case      

- ranking of uncertainty sources highlights - impact of Ts is low
- largest impacts: evaporative fraction, G/Rn ratio (ξ)
- model formulations have a larger impact than input data

Perspectives

- work on other situations

- extending to aerodynamic one-source and two source-models (TSEB, SPARSE…)

- transfer to time serie processing (ex. using MODIS data)

- derive an uncertainty algorithm to be used in the TRISHNA data processing for associating uncertainty to ET
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